Hologres 实时湖仓能力增强,挑战5分钟加速分析OSS数据

原创
01/16 13:52
阅读数 18

5分钟快速使用Hologres实时湖仓能力,无需移动数据,直接加速读取存储于数据湖OSS上的Hudi、Delta、Paimon等格式类型的数据

活动地址: https://developer.aliyun.com/topic/hologres/dlf

准备工作

本文以上海地域为例开通OSS、DLF和Hologres服务。

  1. 开通OSS服务并准备测试数据。

a.打开OSS开通页面,按照界面指引完成开通操作。说明

b.登录OSS管理控制台,创建存储空间(Bucket)。具体操作,请参见控制台快速入门

c.上传tpch_10g_orc_3.zip测试数据至Bucket目录。

  • 测试数据文件上传后,若存在.DS_Store等文件需手动删除。
  • 考虑到下载速度,这里仅包含本文需要的nation_orc、supplier_orc、partsupp_orc数据表。

2.开通DLF服务并导入OSS测试数据。

a.访问开通DLF页面,您也可以单击免费开通,免费试用DLF产品。

b.登录数据湖管理控制台,在元数据管理页面,单击新建数据库。具体操作,请参见创建元数据库
本文以创建mydatabase数据库为例。

c.在元数据抽取页面,创建元数据抽取任务,将OSS测试数据导入。具体操作,请参见元数据抽取
抽取完成后,您可以在元数据管理页面的数据表页签查看。

参数配置 字段描述
抽取任务名称 元数据抽取任务的名称,输入为中英文数字和(_)。
OSS路径 指定待抽取数据的OSS目录。
解析格式 支持json、csv、parquet、orc、hudi、delta、avro中某一类格式进行抽取,或采用自动识别模式会对数据文件自动解析。
目标数据库 抽取获取的元数据存储的元数据库位置。

3.开通Hologres服务并购买Hologres实例。具体操作,请参见购买Hologres

若您是新用户可以申请免费试用Hologres为保证使用体验,免费试用请选择32C配置,若您没有免费试用规格,可以购买Hologres按量付费

步骤一:配置环境

1.在Hologres实例中开启数据湖加速功能。

访问Hologres实例列表,单击目标实例操作列中的数据湖加速并确认,开启数据湖加速功能后,Hologres实例将重启。

2.登录Hologres实例,创建数据库。具体操作,请参见连接HoloWeb

 
 

3.(可选)创建Extension。本文以dlf_fdw为例。

说明

Hologres V2.1版本已默认创建,您无需进行此操作。您可以访问Hologres实例列表,在实例详情页面确认您的实例版本。

CREATE EXTENSION IF NOT EXISTS dlf_fdw;

说明

使用Superuser在SQL编辑器-HoloWeb中执行上述语句创建Extension,该操作针对整个DB生效,一个DB只需执行一次。关于Hologres账号授权详情,请参见授权服务账号

  1. SQL编辑器-HoloWeb,执行以下语句,创建dlf_server外部服务器并配置Endpoint信息,确保Hologres、DLF和OSS之间的正常访问。关于更多的创建方式和相关参数介绍详情,请参见创建外部服务器
--创建外部服务器,以上海reigon为例
CREATE SERVER IF NOT EXISTS dlf_server FOREIGN data wrapper dlf_fdw options (
    dlf_region 'cn-shanghai',
    dlf_endpoint 'dlf-share.cn-shanghai.aliyuncs.com',
    oss_endpoint 'oss-cn-shanghai-internal.aliyuncs.com');

步骤二:通过Hologres外部表查询OSS数据湖

Hologres外部表保存与OSS数据湖数据的映射关系,数据在OSS数据湖中存储,不占用Hologres存储空间,查询性能一般在秒级至分钟级。

1.创建Hologres外部表,并将OSS数据湖数据映射至Hologres外部表。

IMPORT FOREIGN SCHEMA mydatabase LIMIT TO ----本文以mydatabase为例,创建时需替换为您在DLF元数据管理中的自定义的数据库名称
(
  nation_orc,
  supplier_orc,
  partsupp_orc
)
FROM SERVER dlf_server INTO public options (if_table_exist 'update');

2.数据查询。

创建外部表成功后,可以直接查询外部表读取OSS中的数据。示例语句如下。

--TPCH Q11查询语句
select
        ps_partkey,
        sum(ps_supplycost * ps_availqty) as value
from
        partsupp_orc,
        supplier_orc,
        nation_orc
where
        ps_suppkey = s_suppkey
        and s_nationkey = n_nationkey
        and RTRIM(n_name) = 'EGYPT'
group by
        ps_partkey having
                sum(ps_supplycost * ps_availqty) > (
                        select
                                sum(ps_supplycost * ps_availqty) * 0.000001
                        from
                                partsupp_orc,
                                supplier_orc,
                                nation_orc
                        where
                                ps_suppkey = s_suppkey
                                and s_nationkey = n_nationkey
                                and RTRIM(n_name) = 'EGYPT'
                )
order by
        value desc;

步骤三:通过Hologres内部表查询OSS数据湖

Hologres内部表查询是将OSS数据湖数据导入至Hologres中,数据将在Hologres中存储,可获得更好的查询性能和更高的数据处理能力。关于存储费用详情介绍,请参见计费概述

1.在Hologres中创建与外部表相同表结构的内部表,示例如下。

-- 创建nation表
DROP TABLE IF EXISTS NATION;
BEGIN;
CREATE TABLE NATION (
    N_NATIONKEY int NOT NULL PRIMARY KEY,
    N_NAME text NOT NULL,
    N_REGIONKEY int NOT NULL,
    N_COMMENT text NOT NULL
);
CALL set_table_property ('NATION', 'distribution_key', 'N_NATIONKEY');
CALL set_table_property ('NATION', 'bitmap_columns', '');
CALL set_table_property ('NATION', 'dictionary_encoding_columns', '');
COMMIT;
-- 创建supplier表
DROP TABLE IF EXISTS SUPPLIER;
BEGIN;
CREATE TABLE SUPPLIER (
    S_SUPPKEY int NOT NULL PRIMARY KEY,
    S_NAME text NOT NULL,
    S_ADDRESS text NOT NULL,
    S_NATIONKEY int NOT NULL,
    S_PHONE text NOT NULL,
    S_ACCTBAL DECIMAL(15, 2) NOT NULL,
    S_COMMENT text NOT NULL
);
CALL set_table_property ('SUPPLIER', 'distribution_key', 'S_SUPPKEY');
CALL set_table_property ('SUPPLIER', 'bitmap_columns', 'S_NATIONKEY');
CALL set_table_property ('SUPPLIER', 'dictionary_encoding_columns', '');
COMMIT;
-- 创建partsupp表
DROP TABLE IF EXISTS PARTSUPP;
BEGIN;
CREATE TABLE PARTSUPP (
    PS_PARTKEY int NOT NULL,
    PS_SUPPKEY int NOT NULL,
    PS_AVAILQTY int NOT NULL,
    PS_SUPPLYCOST DECIMAL(15, 2) NOT NULL,
    PS_COMMENT text NOT NULL,
    PRIMARY KEY (PS_PARTKEY, PS_SUPPKEY)
);
CALL set_table_property ('PARTSUPP', 'distribution_key', 'PS_PARTKEY');
CALL set_table_property ('PARTSUPP', 'bitmap_columns', 'ps_availqty');
CALL set_table_property ('PARTSUPP', 'dictionary_encoding_columns', '');
COMMIT;

2.同步Hologres外部表数据至Hologres内部表。

---将Hologres外表数据导入内表
INSERT INTO nation SELECT * FROM nation_orc;
INSERT INTO supplier SELECT * FROM supplier_orc;
INSERT INTO partsupp SELECT * FROM partsupp_orc;

3.查询Hologres内部表数据。

--TPCH Q11查询语句
select
        ps_partkey,
        sum(ps_supplycost * ps_availqty) as value
from
        partsupp,
        supplier,
        nation
where
        ps_suppkey = s_suppkey
        and s_nationkey = n_nationkey
        and RTRIM(n_name) = 'EGYPT'
group by
        ps_partkey having
                sum(ps_supplycost * ps_availqty) > (
                        select
                                sum(ps_supplycost * ps_availqty) * 0.000001
                        from
                                partsupp,
                                supplier,
                                nation
                        where
                                ps_suppkey = s_suppkey
                                and s_nationkey = n_nationkey
                                and RTRIM(n_name) = 'EGYPT'
                )
order by
        value desc;

晒出结果:

一等奖、二等奖、参与奖:
将内表查询或外表查询的运行日志截图晒出。

外表查询速度:

 

内表查询速度:

 

分享作品参与点赞排行

  • 请使用提交作品账号开通产品并参与挑战,后台会校验产品开通及SQL运行情况。
  • 请上传原创数据表及截图,若为抄袭则取消资格;若发现有刷赞行为,立即撤销作品,取消参赛资格。

挑战奖:

基于已有的外表和内表,分别运行2条同样的自定义SQL,附上外表SQL语句、运行日志、运行结果、内表SQL语句、运行日志、运行结果,6个部分合并1张截图上传。

  • SQL需要涉及多表查询,单表SQL不支持参与挑战
  • 获奖名单按照作品提交时间排序
  • 为保证SQL原创性,同样SQL只取第一位
  • 挑战奖优先,不与一等奖、二等奖重复获取

挑战奖作品示例:

挑战奖:小米充电宝15个,非教程代码执行SQL,完成运行速度对比
一等奖:LAMY钢笔1个,作品点赞数位列第1名,且点赞数≥20个
二等奖:小米背包20个,作品点赞数位列第2-21名,且点赞数≥10个
参与奖:社区积分,每位参赛者可获得社区100积分

MaxCompute湖仓一体

数据仓库MaxCompute也可以基于本实验同一份OSS数据和DLF抽取的元数据进行 湖数据查询和湖数据入仓 等湖仓一体实践,模拟真实业务中高价值湖数据入仓进行处理加工、联合仓内数据建模等操作,具体请参考MaxCompute湖仓一体

MaxCompute 是企业级 SaaS 模式云数据仓库,以 Serverless 架构提供快速、全托管的在线数据仓库服务,消除了传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您可以经济并高效的分析处理海量数据。数以万计的企业正基于 MaxCompute 进行数据计算与分析,将数据高效转换为业务洞察。更多介绍请查看MaxCompute官网

原文链接

本文为阿里云原创内容,未经允许不得转载。

展开阅读全文
加载中
点击引领话题📣 发布并加入讨论🔥
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部