TensorFlow人工智能引擎入门教程之二 CNN卷积神经网络的基本定义理解。
TensorFlow人工智能引擎入门教程之二 CNN卷积神经网络的基本定义理解。
zhuyuping 发表于2年前
TensorFlow人工智能引擎入门教程之二 CNN卷积神经网络的基本定义理解。
  • 发表于 2年前
  • 阅读 16394
  • 收藏 12
  • 点赞 2
  • 评论 1

腾讯云 新注册用户 域名抢购1元起>>>   

摘要: 这一章节我们将 tensorFlow怎么实现卷积神经网络 ,CNN ,其实CNN可以用来训练声音的,不过效果一般,所以一般都用于图像方面,因为图像像素局部共享 参数共享 ,图像金字塔法则。可以大大减少系数

  首先 上面讲了神经元  Y=WX+B  ,通过输入的参数X ===========》Y 深度学习 每一个batch来说 其实就是 多项公式

   

   我们知道 在数学里面 求多项公式 其实 就是 矩阵 W 矩阵 乘与 X  加上 B 矩阵 = Y矩阵 ,矩阵 二元数组在tensorflow 也是一个tensor ndarray , 通常 我们知道 因为relu 收敛效果要比sigmod 与tanh 要好,所以在cnn中常用relu,所以 其实 对于输出o=relu(wx+b) , 

        1.TensorFlow卷积

     比如 下面 是tensorflow卷积定义 relu(W*X+B) W 矩阵 * X矩阵 + B矩阵 = W 权重variable变量 * X  (placeholder占位符外部输入)variable变量 + B偏重变量,因为深度学习 会自动 不断地计算loss损失 BP 来调整 w b 所以 w b初始化 可以随便 全部都是0 都行 ,所以 其实 就是 X 以及 Y 对于 X来说其实我们知道 就是 我们图像数据 Y 是图像的标签,但是Y需要转为数学可以计算的值,所以采用one-hot 数组记录 标签的索引就行,比如 xx1 xx2 xx3  相应的y1=[1,0,0] y2=[0 1 0] y3=[0 0 1]

那么 其实 就是 X 图像的像素 通过外部输入 placeholder占位符  Y值 外部输入 通过 placeholder占位符 

我们知道 W*X 矩阵 相乘 必须 符合 MXN NXM =MXM 也就是说W的 列 必须 与 X的行数目相同 这是要注意的,所以上一张shape来规范维度计算 ,下面是一个卷积层 定义 relu(wx+b)  下面是tensorflow来表示relu(wx+b)的公式 

其中要注意参数 strides 是卷积滑动的步长 你可以配置更多的系数,

def conv2d(x, w, b):
    return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME'),b))


 

  上面我们理解了, 其实就是 W矩阵 * X矩阵 +B 矩阵 =Y矩阵 

  Y矩阵 好算 ,W矩阵 +B矩阵 已知 可以随意后面要bp调整。那么X矩阵 是图像 也就是说输入的X

  

x = tf.placeholder(tf.float32, [None, w*h]) #w*h 因为批次训练 数据可以任意所以第一个是None ,第二个图像是个w * h的图像 ,可以展开得到 w * h 的数组


  我们知道 卷积运算 其实是卷积的个数 M  展开的卷积核长宽维度 K  *  卷积能够提取的数目 K * 提取图像的维度N =MXN

  也就说可以通过 卷积核 让图像 W*H 转变成 一个 卷积的个数 的行 ,N 为提取图像卷积特征的每一行数据的的矩阵 

  还是遵循WX+B 

  我们定义好W 

  我们可以把整个网络看成wx+b 忽略掉那些relu 等等  其实 就是一个y=wx+b 我们知道输入 是上面的

  

x = tf.placeholder(tf.float32, [None, w*h]) 
y = tf.placeholder(tf.float32, [None, ysize])#y的数目个数 比如3个类 就是3


    那么 一个x 需 要 *  W = y   计入batch为50 y为10  那么[50,224*224] * W= [50 ,10] 

  那么W 需要是一个[224*224,10] 的矩阵 ,也就是说 至少224*224*10*50 个连接

   

 下面继续 讲X [None ,w*h] 对于每一个 w*h 是一个矩阵  每一层的w 也是一个矩阵 每一层的 b也是一个矩阵 ,每一层的输出y1 也是一个矩阵 y=[w*h]*w+b 为了减少系数,我们使用卷积,把它转换成MXN的值 ,这里就是跟全连接层的不同,使用了卷积转换成了一个MXN的卷积特征 而全连接层就是 y=wx+b (这里省略了那些relu(wx+b) tanh(wx+b))

  所以我们现在来看看每一层的w 定义

  因为卷积层的w是需要 与 w*h 提取的MXK来做矩阵相乘 所以 他是跟卷积核相关 以及 输入 输出 相关,对于每一张图像

  输入为1 输出分解为多个输出用于 第二层运算

wc=tf.Variable(tf.random_normal([3, 3, 1, 64]) #3 3 分别为3x3大小的卷积核 1位输入数目 因为是第一层所以是1 输出我们配置的64 
所以我们知道了 如果下一次卷积wc2=[5,5,64,256] //5x5 是我们配置的卷积核大小,第三位表示输入数目 我们通过上面知道 上面的输出 也就是下一层的输入 所以 就是64 了输出我们定义成256 这个随你喜好,关键要迭代看效果,一般都是某一个v*v的值


 这样我们知道了 wc*(卷积得到的x) + b =y1下一层输入,我们也能知道 一下层输入 mxnxo 分别为输出O个卷积核特征MXN 我们也能知道b 大小 那个肯定跟O一样,比如上面是64输出,所以

 

b1=tf.Variable(tf.random_normal([64]))
同样可以知道b2=[256]


 下面我们讲一讲池化层pool 池化层 不会减少输出,只会把MXNXO ,把卷积提取的特征 做进一步卷积 取MAX AVG MIN等 用局部代替整理进一步缩小特征值大小

  下面是一个用kxk 的核做maxpooling的定义

def max_pool_kxk(x):
  return tf.nn.max_pool(x, ksize=[1, k, k, 1],
                        strides=[1, k, k, 1], padding='SAME')

这样我们可以定义一个简单的CNN了

  

c1 = tf.nn.relu(tf.nn.conv2d(X, w, [1, 1, 1, 1], 'SAME'))
    m1 = tf.nn.max_pool(l1a, ksize=[1, k, k, 1],
                        strides=[1, k, k, 1], padding='SAME')
    d1 = tf.nn.dropout(l1, p_keep_conv)

    c2 = tf.nn.relu(tf.nn.conv2d(l1, w2, [1, 1, 1, 1], 'SAME'))
    m2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')
    d2= tf.nn.dropout(l2, p_keep_conv)

    c3 = tf.nn.relu(tf.nn.conv2d(l2, w3, [1, 1, 1, 1], 'SAME'))
    m3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')
    
    d3 = tf.nn.dropout(tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]), p_keep_conv)
    #d3表示倒数第二层的输出 也就是倒数第一层一层的输入x 我们代入 y=wx+b 也就是w*x=w4*d3+b 
    y = tf.nn.bias_add(tf.matmul(d3, w4),b4))#matmul 顾名思义mat矩阵mul相乘 matmul w*x


  上面的用图表示就是 X,Y ========>conv1======>relu======>drop梯度下降=======》conv2===>relu2===drop2====>conv3====>relu======>drop===full全连接 (y=wx+b)

官方给了 一个example 关于alexnet的 我贴一下代码 ,大家只要理解了上面讲的内容 就可以知道怎么稍微修改 就可以自己定义一个 CNN网络了

  http://www.tensorfly.cn/tfdoc/tutorials/deep_cnn.html

http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html

  

 大家可以去执行一下,这个我执行多次了,下一章DNN ,DNN 就是CNN去掉卷积层 ,的深度学习网络 通过全连接层 梯度下降层构成的的DNN网络

 大家有疑问就是后面训练完了怎么使用,其实训练完了 保存每一层的w b参数 起来就是一个网络模型model 然后使用model进行预测 分类了,这个后面要讲怎么保存并使用model

 不知道怎么上传附件。麻烦 懒得放外联了 。其中input_data模块 

   地址为 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/input_data.py

import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

import tensorflow as tf

# Parameters
learning_rate = 0.001
training_iters = 100000
batch_size = 128
display_step = 10

# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units

# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)

# Create model
def conv2d(img, w, b):
    return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], padding='SAME'),b))

def max_pool(img, k):
    return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')

def conv_net(_X, _weights, _biases, _dropout):
    # Reshape input picture
    _X = tf.reshape(_X, shape=[-1, 28, 28, 1])

    # Convolution Layer
    conv1 = conv2d(_X, _weights['wc1'], _biases['bc1'])
    # Max Pooling (down-sampling)
    conv1 = max_pool(conv1, k=2)
    # Apply Dropout
    conv1 = tf.nn.dropout(conv1, _dropout)

    # Convolution Layer
    conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2'])
    # Max Pooling (down-sampling)
    conv2 = max_pool(conv2, k=2)
    # Apply Dropout
    conv2 = tf.nn.dropout(conv2, _dropout)

    # Fully connected layer
    dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Reshape conv2 output to fit dense layer input
    dense1 = tf.nn.relu(tf.add(tf.matmul(dense1, _weights['wd1']), _biases['bd1'])) # Relu activation
    dense1 = tf.nn.dropout(dense1, _dropout) # Apply Dropout

    # Output, class prediction
    out = tf.add(tf.matmul(dense1, _weights['out']), _biases['out'])
    return out

# Store layers weight & bias
weights = {
    'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])), # 5x5 conv, 1 input, 32 outputs
    'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])), # 5x5 conv, 32 inputs, 64 outputs
    'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])), # fully connected, 7*7*64 inputs, 1024 outputs
    'out': tf.Variable(tf.random_normal([1024, n_classes])) # 1024 inputs, 10 outputs (class prediction)
}

biases = {
    'bc1': tf.Variable(tf.random_normal([32])),
    'bc2': tf.Variable(tf.random_normal([64])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

# Construct model
pred = conv_net(x, weights, biases, keep_prob)

# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initializing the variables
init = tf.initialize_all_variables()

# Launch the graph
with tf.Session() as sess:
    sess.run(init)
    step = 1
    # Keep training until reach max iterations
    while step * batch_size < training_iters:
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        # Fit training using batch data
        sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
        if step % display_step == 0:
            # Calculate batch accuracy
            acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
            # Calculate batch loss
            loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
        step += 1
    print "Optimization Finished!"
    # Calculate accuracy for 256 mnist test images
    print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})

运行截图========== accuracy为精度 loss为损失函数,有多种计算方式 这里是 交叉熵” 。下面看到 accuracy第三次为0.40625 通过多次迭代后 不断的提高,运行多次 最后保存精度最高的那个为模型就好了,这里因为alexnet本来就是一个很简单的模型,所以精度也不怎么高。 我服务器是1核1G的CPU服务器所以很慢。懒得等他运行完了



精度 在 增加。。。

好像最后是99。2% 精确度 情况 ,手写识别 0-9 这里有98.4%了 


好吧。这次运行 精度大概97.6左右 下一章节  我修改一下系数以及 加几层层网络试试效果 ,

共有 人打赏支持
粉丝 291
博文 34
码字总数 50705
评论 (1)
全体下线
标点符号啊,完全都读不通
×
zhuyuping
如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!
* 金额(元)
¥1 ¥5 ¥10 ¥20 其他金额
打赏人
留言
* 支付类型
微信扫码支付
打赏金额:
已支付成功
打赏金额: