文档章节

Python使用pymongo操作mongodb

xuzhzz
 xuzhzz
发布于 2017/09/11 23:59
字数 2641
阅读 39
收藏 0
点赞 0
评论 0

连接MongoDB

连接MongoDB我们需要使用PyMongo库里面的MongoClient,一般来说传入MongoDB的IP及端口即可,第一个参数为地址host,第二个参数为端口port,端口如果不传默认是27017。

import pymongo
client = pymongo.MongoClient(host='localhost', port=27017)

这样我们就可以创建一个MongoDB的连接对象了。

另外MongoClient的第一个参数host还可以直接传MongoDB的连接字符串,以mongodb开头,例如:

client = MongoClient('mongodb://localhost:27017/')

可以达到同样的连接效果。

指定数据库

MongoDB中还分为一个个数据库,我们接下来的一步就是指定要操作哪个数据库,在这里我以test数据库为例进行说明,所以下一步我们需要在程序中指定要使用的数据库。

db = client.test

调用client的test属性即可返回test数据库,当然也可以这样来指定:

db = client['test']

两种方式是等价的。

指定集合

MongoDB的每个数据库又包含了许多集合Collection,也就类似与关系型数据库中的表,下一步我们需要指定要操作的集合,在这里我们指定一个集合名称为students,学生集合。还是和指定数据库类似,指定集合也有两种方式。

collection = db.students

collection = db['students']

插入数据

接下来我们便可以进行数据插入了,对于students这个Collection,我们新建一条学生数据,以字典的形式表示:

student = {
    'id': '20170101',
    'name': 'Jordan',
    'age': 20,
    'gender': 'male'
}

在这里我们指定了学生的学号、姓名、年龄和性别,然后接下来直接调用collection的insert()方法即可插入数据。

result = collection.insert(student)
print(result)

在MongoDB中,每条数据其实都有一个_id属性来唯一标识,如果没有显式指明_id,MongoDB会自动产生一个ObjectId类型的_id属性。insert()方法会在执行后返回的_id值。

运行结果:

5932a68615c2606814c91f3d

当然我们也可以同时插入多条数据,只需要以列表形式传递即可,示例如下:

student1 = {
    'id': '20170101',
    'name': 'Jordan',
    'age': 20,
    'gender': 'male'
}

student2 = {
    'id': '20170202',
    'name': 'Mike',
    'age': 21,
    'gender': 'male'
}

result = collection.insert([student1, student2])
print(result)

返回的结果是对应的_id的集合,运行结果:

[ObjectId('5932a80115c2606a59e8a048'), ObjectId('5932a80115c2606a59e8a049')]

实际上在PyMongo 3.X版本中,insert()方法官方已经不推荐使用了,当然继续使用也没有什么问题,官方推荐使用insert_one()和insert_many()方法将插入单条和多条记录分开。

student = {
    'id': '20170101',
    'name': 'Jordan',
    'age': 20,
    'gender': 'male'
}

result = collection.insert_one(student)
print(result)
print(result.inserted_id)

运行结果:

<pymongo.results.InsertOneResult object at 0x10d68b558>
5932ab0f15c2606f0c1cf6c5

返回结果和insert()方法不同,这次返回的是InsertOneResult对象,我们可以调用其inserted_id属性获取_id。

对于insert_many()方法,我们可以将数据以列表形式传递即可,示例如下:

student1 = {
    'id': '20170101',
    'name': 'Jordan',
    'age': 20,
    'gender': 'male'
}

student2 = {
    'id': '20170202',
    'name': 'Mike',
    'age': 21,
    'gender': 'male'
}

result = collection.insert_many([student1, student2])
print(result)
print(result.inserted_ids)

insert_many()方法返回的类型是InsertManyResult,调用inserted_ids属性可以获取插入数据的_id列表,运行结果:

<pymongo.results.InsertManyResult object at 0x101dea558>
[ObjectId('5932abf415c2607083d3b2ac'), ObjectId('5932abf415c2607083d3b2ad')]

查询

插入数据后我们可以利用find_one()或find()方法进行查询,find_one()查询得到是单个结果,find()则返回多个结果。

result = collection.find_one({'name': 'Mike'})
print(type(result))
print(result)

在这里我们查询name为Mike的数据,它的返回结果是字典类型,运行结果:

<class 'dict'>
{'_id': ObjectId('5932a80115c2606a59e8a049'), 'id': '20170202', 'name': 'Mike', 'age': 21, 'gender': 'male'}

可以发现它多了一个_id属性,这就是MongoDB在插入的过程中自动添加的。

我们也可以直接根据ObjectId来查询,这里需要使用bson库里面的ObjectId。

from bson.objectid import ObjectId

result = collection.find_one({'_id': ObjectId('593278c115c2602667ec6bae')})
print(result)

其查询结果依然是字典类型,运行结果:

{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}

当然如果查询结果不存在则会返回None。

对于多条数据的查询,我们可以使用find()方法,例如在这里查找年龄为20的数据,示例如下:

results = collection.find({'age': 20})
print(results)
for result in results:
    print(result)

运行结果:

<pymongo.cursor.Cursor object at 0x1032d5128>
{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278c815c2602678bb2b8d'), 'id': '20170102', 'name': 'Kevin', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278d815c260269d7645a8'), 'id': '20170103', 'name': 'Harden', 'age': 20, 'gender': 'male'}

返回结果是Cursor类型,相当于一个生成器,我们需要遍历取到所有的结果,每一个结果都是字典类型。

如果要查询年龄大于20的数据,则写法如下:

results = collection.find({'age': {'$gt': 20}})

在这里查询的条件键值已经不是单纯的数字了,而是一个字典,其键名为比较符号$gt,意思是大于,键值为20,这样便可以查询出所有年龄大于20的数据。

在这里将比较符号归纳如下表:

符号含义示例 $lt小于{'age': {'$lt': 20}} $gt大于{'age': {'$gt': 20}} $lte小于等于{'age': {'$lte': 20}} $gte大于等于{'age': {'$gte': 20}} $ne不等于{'age': {'$ne': 20}} $in在范围内{'age': {'$in': [20, 23]}} $nin不在范围内{'age': {'$nin': [20, 23]}}

另外还可以进行正则匹配查询,例如查询名字以M开头的学生数据,示例如下:

results = collection.find({'name': {'$regex': '^M.*'}})

在这里使用了$regex来指定正则匹配,^M.*代表以M开头的正则表达式,这样就可以查询所有符合该正则的结果。

在这里将一些功能符号再归类如下:

符号含义示例示例含义 $regex匹配正则{'name': {'$regex': '^M.*'}}name以M开头 $exists属性是否存在{'name': {'$exists': True}}name属性存在 $type类型判断{'age': {'$type': 'int'}}age的类型为int $mod数字模操作{'age': {'$mod': [5, 0]}}年龄模5余0 $text文本查询{'$text': {'$search': 'Mike'}}text类型的属性中包含Mike字符串 $where高级条件查询{'$where': 'obj.fans_count == obj.follows_count'}自身粉丝数等于关注数

这些操作的更详细用法在可以在MongoDB官方文档找到: https://docs.mongodb.com/manual/reference/operator/query/

计数

要统计查询结果有多少条数据,可以调用count()方法,如统计所有数据条数:

count = collection.find().count()
print(count)

或者统计符合某个条件的数据:

count = collection.find({'age': 20}).count()
print(count)

排序

可以调用sort方法,传入排序的字段及升降序标志即可,示例如下:

results = collection.find().sort('name', pymongo.ASCENDING)
print([result['name'] for result in results])

运行结果:

['Harden', 'Jordan', 'Kevin', 'Mark', 'Mike']

偏移

在某些情况下我们可能想只取某几个元素,在这里可以利用skip()方法偏移几个位置,比如偏移2,就忽略前2个元素,得到第三个及以后的元素。

results = collection.find().sort('name', pymongo.ASCENDING).skip(2)
print([result['name'] for result in results])

运行结果:

['Kevin', 'Mark', 'Mike']

另外还可以用limit()方法指定要取的结果个数,示例如下:

results = collection.find().sort('name', pymongo.ASCENDING).skip(2).limit(2)
print([result['name'] for result in results])

运行结果:

['Kevin', 'Mark']

如果不加limit()原本会返回三个结果,加了限制之后,会截取2个结果返回。

值得注意的是,在数据库数量非常庞大的时候,如千万、亿级别,最好不要使用大的偏移量来查询数据,很可能会导致内存溢出,可以使用类似find({'_id': {'$gt': ObjectId('593278c815c2602678bb2b8d')}}) 这样的方法来查询,记录好上次查询的_id。

更新

对于数据更新可以使用update()方法,指定更新的条件和更新后的数据即可,例如:

condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 25
result = collection.update(condition, student)
print(result)

在这里我们将name为Kevin的数据的年龄进行更新,首先指定查询条件,然后将数据查询出来,修改年龄,之后调用update方法将原条件和修改后的数据传入,即可完成数据的更新。

运行结果:

{'ok': 1, 'nModified': 1, 'n': 1, 'updatedExisting': True}

返回结果是字典形式,ok即代表执行成功,nModified代表影响的数据条数。

另外update()方法其实也是官方不推荐使用的方法,在这里也分了update_one()方法和update_many()方法,用法更加严格,第二个参数需要使用$类型操作符作为字典的键名,我们用示例感受一下。

condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 26
result = collection.update_one(condition, {'$set': student})
print(result)
print(result.matched_count, result.modified_count)

在这里调用了update_one方法,第二个参数不能再直接传入修改后的字典,而是需要使用{'$set': student}这样的形式,其返回结果是UpdateResult类型,然后调用matched_count和modified_count属性分别可以获得匹配的数据条数和影响的数据条数。

运行结果:

<pymongo.results.UpdateResult object at 0x10d17b678>
1 0

我们再看一个例子:

condition = {'age': {'$gt': 20}}
result = collection.update_one(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)

在这里我们指定查询条件为年龄大于20,然后更新条件为{'$inc': {'age': 1}},也就是年龄加1,执行之后会讲第一条符合条件的数据年龄加1。

运行结果:

<pymongo.results.UpdateResult object at 0x10b8874c8>
1 1

可以看到匹配条数为1条,影响条数也为1条。

如果调用update_many()方法,则会将所有符合条件的数据都更新,示例如下:

condition = {'age': {'$gt': 20}}
result = collection.update_many(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)

这时候匹配条数就不再为1条了,运行结果如下:

<pymongo.results.UpdateResult object at 0x10c6384c8>
3 3

可以看到这时所有匹配到的数据都会被更新。

删除

删除操作比较简单,直接调用remove()方法指定删除的条件即可,符合条件的所有数据均会被删除,示例如下:

result = collection.remove({'name': 'Kevin'})
print(result)

运行结果:

{'ok': 1, 'n': 1}

另外依然存在两个新的推荐方法,delete_one()和delete_many()方法,示例如下:

result = collection.delete_one({'name': 'Kevin'})
print(result)
print(result.deleted_count)
result = collection.delete_many({'age': {'$lt': 25}})
print(result.deleted_count)

运行结果:

<pymongo.results.DeleteResult object at 0x10e6ba4c8>
1
4

delete_one()即删除第一条符合条件的数据,delete_many()即删除所有符合条件的数据,返回结果是DeleteResult类型,可以调用deleted_count属性获取删除的数据条数。

更多

另外PyMongo还提供了一些组合方法,如find_one_and_delete()、find_one_and_replace()、find_one_and_update(),就是查找后删除、替换、更新操作,用法与上述方法基本一致。

另外还可以对索引进行操作,如create_index()、create_indexes()、drop_index()等。

详细用法可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/collection.html

另外还有对数据库、集合本身以及其他的一些操作,在这不再一一讲解,可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/

© 著作权归作者所有

共有 人打赏支持
xuzhzz
粉丝 0
博文 6
码字总数 18385
作品 0
广州
Python中MongoDB使用

MongoDB的层级为 database -->collection --> document 安装MongoDB,启动mongo服务 PyMongo模块是Python对MongoDB操作的接口包,主要实现对MongoDB的几种操作:增删改查以及排序等功能 安装...

鱼煎 ⋅ 05/31 ⋅ 0

Fedora上使用Python操作MongoDB学习笔记

1. 创建Python虚拟环境 Fedora中已经安装有Python2和Python3,可执行文件的目录在/usr/bin/目录下,其中软连接为 接下来采用Python3来操作MongoDB,因此为不污染原有的系统环境,以及隔离此特...

t_huanghai ⋅ 04/21 ⋅ 0

趣说Mongodb和他的两个小伙伴

Mongodb的自述 大家好,我是Mongodb 在数据库家族众多兄弟中,大致可以分为关联性数据库和文档性数据库(NoSQL)两类,而我就属于后者。 近些年随着我的朋友Node慢慢变得愈发强大,我也受到了...

dali_saymore ⋅ 06/13 ⋅ 0

社区模板的 python 后端实现 - PyFly

项目介绍 PyFly 是 Flask + Layui Fly Template实现的一个社区项目,使用flask-admin实现了简单的后台管理功能,数据库使用Mongodb,前台实现功能:用户注册、登录、邮件激活、发帖、回帖、...

981764793 ⋅ 04/28 ⋅ 0

981764793/PyFly

PyFly 项目介绍 Flask + Layui Fly Template实现的一个社区项目,使用flask-admin实现了简单的后台管理功能,数据库使用Mongodb,前台实现功能:用户注册、登录、邮件激活、发帖、回帖、点赞...

981764793 ⋅ 04/28 ⋅ 0

Python中使用MongoEngine

pymongo来操作MongoDB数据库,但是直接把对于数据库的操作代码都写在脚本中,这会让应用的代码耦合性太强,而且不利于代码的优化管理 一般应用都是使用MVC框架来设计的,为了更好地维持MVC结...

鱼煎 ⋅ 05/31 ⋅ 0

存储大量爬虫数据的数据库,了解一下?

"当然, 并不是所有数据都适合" 在学习爬虫的过程中, 遇到过不少坑. 今天这个坑可能以后你也会遇到, 随着爬取数据量的增加, 以及爬取的网站数据字段的变化, 以往在爬虫入门时使用的方法局限性...

fesoncn ⋅ 04/09 ⋅ 0

MongoDB大批量读写数据优化记录

用批量写入代替单个写入 最开始,我的代码逻辑是这样的: 这种方法在数据量较小时可以很好的工作,但是当数据量非常大时,此种操作会非常慢,我们需要通过批量写入的方式来写入数据。 调整i...

geekpy ⋅ 04/20 ⋅ 0

一个月入门Python爬虫,快速获取大规模数据

数据是创造和决策的原材料,高质量的数据都价值不菲。而利用爬虫,我们可以获取大量的价值数据,经分析可以发挥巨大的价值,比如: 豆瓣、知乎:爬取优质答案,筛选出各话题下热门内容,探索...

Python开发者 ⋅ 04/25 ⋅ 0

大数据分析挖掘学习方向?数据分析师的就业前景怎么样?

加米谷数据分析挖掘课程明细,从理论到云端实操环境到项目实战,手把手教您从0掌握数据分析与挖掘技术,带您走进数据时代。 第一阶段(python基础) python入门:1、Python版本特性介绍2、P...

加米谷大数据 ⋅ 04/17 ⋅ 0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

Mahout推荐算法之SlopOne

一、 算法原理 有别于基于用户的协同过滤和基于item的协同过滤,SlopeOne采用简单的线性模型估计用户对item的评分。如下图,估计UserB对ItemJ的偏好 图(1) 在真实情况下,该方法有如下几个...

xiaomin0322 ⋅ 17分钟前 ⋅ 0

LVM讲解

LVM是什么 LVM是 Logical Volume Manager(逻辑卷管理)的简写,它是Linux环境下对磁盘分区进行管理的一种机制,Linux用户安装Linux操作系统时遇到的一个常见的难以决定的问题就是如何正确地...

李超小牛子 ⋅ 26分钟前 ⋅ 0

mysql更改密码、连接mysql、mysql常用命令

1. 更改mysql的root账户密码: mysql中root账户和系统root不是一个账户 1.1 更改环境变量PATH,增加mysql绝对路径 由于mysql安装目录为/usr/local/mysql/,所以系统不能直接使用mysql,需把/...

laoba ⋅ 27分钟前 ⋅ 0

阿里云发布企业数字化及上云外包平台服务:阿里云众包平台

摘要: 阿里云正式发布旗下众包平台业务(网址:https://zhongbao.aliyun.com/),支持包括:网站定制开发,APP、电商系统等软件开发,商标、商品LOGO、VI、产品包装设计、营销推广、大数据人...

猫耳m ⋅ 27分钟前 ⋅ 0

阿里云发布企业数字化及上云外包平台服务:阿里云众包平台

摘要: 阿里云正式发布旗下众包平台业务(网址:https://zhongbao.aliyun.com/),支持包括:网站定制开发,APP、电商系统等软件开发,商标、商品LOGO、VI、产品包装设计、营销推广、大数据人...

阿里云云栖社区 ⋅ 31分钟前 ⋅ 0

1.03-Maven中使用ueditor富文本编辑器

起因:在maven仓库未找到百度的ueditor的jar包 操作: 1.下载百度的ueditor的jar包 2.打开命令行,切换到ueditor的下载位置,运行一下命令: mvn install:install-file -Dfile=ueditor-1.1....

静以修身2025 ⋅ 36分钟前 ⋅ 0

几道Spring 面试题

1、BeanFactory 接口和 ApplicationContext 接口有什么区别? ApplicationContext 接口继承BeanFactory接口 Spring核心工厂是BeanFactory BeanFactory采取延迟加载,第一次getBean时才会初始...

职业搬砖20年 ⋅ 46分钟前 ⋅ 0

包饺子

http://storage.slide.news.sina.com.cn/slidenews/77_ori/2018_24/74766_826131_625489.gif

霜叶情 ⋅ 47分钟前 ⋅ 0

xml解析

方法一: String s_xml1 = "<xml>" + "<head>lalalalal</head>" + "<body>1234</body>" + "</xml>"; try { DocumentBuilderFactory documentBuilderFactory......

GithubXD ⋅ 59分钟前 ⋅ 0

reuse stream

Although Java streams were designed to be operated only once, programmers still ask how to reuse a stream. From a simple web search, we can find many posts with this same issue ......

idoz ⋅ 59分钟前 ⋅ 0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部