文档章节

Docker监控方案(TIG)的研究与实践之Influxdb

Andy-xu
 Andy-xu
发布于 2016/09/25 12:27
字数 1580
阅读 898
收藏 6

前言:

Influxdb也是有influxdata公司(www.influxdata.com )开发的用于数据存储的时间序列数据库.可用于数据的时间排列。在整个TIG(Telegraf+influxdb+grafana)方案中,influxdb可算作一个中间件,主要负责原始数据的存储,并按照时间序列进行索引构建以提供时间序列查询接口。在整个TIG方案中,应该先构建的就是Influxdb。

Influxdb研究与实践:

influxdb介绍:

使用TSM(Time Structured Merge)存储引擎,允许高摄取速度和数据压缩; 
使用go编写,无需其他依赖; 
简单,高性能写查询httpAPI接口; 
支持其他数据获取协议的插件,比如graphite,collected,OpenTSDB; 
使用relay构建高可用https://docs.influxdata.com/influxdb/v1.0/high_availability/relay/
扩展的类sql语言,很容易查询汇总数据; 
tag的支持,可用让查询变的更加高效和快速; 
保留策略有效地自动淘汰过期的数据; 
持续所产生的自动计算的数据会使得频繁的查询更加高效; 
web管理页面的支持

下载安装:

github:https://github.com/influxdata/influxdb 源码编译 
官网下载: 
Centos系列:wgethttps://dl.influxdata.com/influxdb/releases/influxdb-1.0.0.x86_64.rpm && sudo yum localinstall influxdb-1.0.0.x86_64.rpm 
源码包系列:wgethttps://dl.influxdata.com/influxdb/releases/influxdb-1.0.0_linux_amd64.tar.gz && tar xvfz influxdb-1.0.0_linux_amd64.tar.gz 
docker系列:docker pull influxdb 
安装手册:https://docs.influxdata.com/influxdb/v0.9/introduction/installation/

配置:

#cat /etc/influxdb/influxdb.conf
reporting-disabled = false
[registration]
[meta]
dir = "/var/lib/influxdb/meta"
hostname = "10.0.0.2"    #此hostname必须写本机,否则无法连接到数据操作的API
bind-address = ":8088"
retention-autocreate = true
election-timeout = "1s"
heartbeat-timeout = "1s"
leader-lease-timeout = "500ms"
commit-timeout = "50ms"
cluster-tracing = false
[data]
dir = "/var/lib/influxdb/data"
max-wal-size = 104857600 # Maximum size the WAL can reach before a flush. Defaults to 100MB.
wal-flush-interval = "10m" # Maximum time data can sit in WAL before a flush.
wal-partition-flush-delay = "2s" # The delay time between each WAL partition being flushed.
wal-dir = "/var/lib/influxdb/wal"
wal-logging-enabled = true
[hinted-handoff]
enabled = true
dir = "/var/lib/influxdb/hh"
max-size = 1073741824
max-age = "168h"
retry-rate-limit = 0
retry-interval = "1s"
retry-max-interval = "1m"
purge-interval = "1h"
[admin]
enabled = true
bind-address = ":8083"
https-enabled = false
https-certificate = "/etc/ssl/influxdb.pem"
[http]
enabled = true
bind-address = ":8086"
auth-enabled = false
log-enabled = true
write-tracing = false
pprof-enabled = false
https-enabled = false
https-certificate = "/etc/ssl/influxdb.pem"
[opentsdb]
enabled = false
[collectd]
enabled = false

注意:influxdb服务会启动三个端口:8086为服务的默认数据处理端口,主要用来influxdb数据库的相关操作,可提供相关的API;8083为管理员提供了一个可视化的web界面,用来为用户提供友好的可视化查询与数据管理;8088主要为了元数据的管理。需要注意的是,influxdb默认是需要influxdb用户启动,且数据存放在/var/lib/influxdb/下面,生产环境需要注意这个。

启动:

和telegraf启动方式一样,可以使用init.d或者systemd进行管理influxdb 
注意,启动之后需要查看相关的端口是否正在监听,并检查日志确保服务正常启动

使用:

如果说使用telegraf最核心的部分在配置,那么influxdb最核心的就是SQL语言的使用了。influxdb默认支持三种操作方式: 
登录influxdb的shell中操作:

创建数据库:
create database mydb
创建用户:
create user "bigdata" with password 'bigdata' with all privileges
查看数据库:
show databases;
数据插入:
insert bigdata,host=server001,regin=HC load=88
切换数据库:
 use mydb
查看数据库中有哪些measurement(类似数据库中的表):
show measurements
查询:
select * from cpu limit 2
查询一小时前开始到现在结束的:
#select load from cpu where time > now() - 1h
查询从历史纪元开始到1000天之间:
#select load from cpu where time < now() + 1000d
查找一个时间区间:
#select load from cpu where time > '2016-08-18' and time < '2016-09-19'
查询一个小时间区间的数据,比如在September 18, 2016 21:24:00:后的6分钟:
#select load from cpu where time > '2016-09-18T21:24:00Z' +6m
使用正则查询所有measurement的数据:
#select * from /.*/ limit 1
#select * from /^docker/ limit 3
#select * from /.*mem.*/ limit 3
正则匹配加指定tag:(=~ !~)
#select * from cpu where "host" !~ /.*HC.*/ limit 4
#SELECT * FROM "h2o_feet" WHERE ("location" =~ /.*y.*/ OR "location" =~ /.*m.*/) AND "water_level" > 0 LIMIT 4
排序:group by的用法必须得是在复合函数中进行使用
#select count(type) from events group by time(10s)
#select count(type) from events group by time(10s),type
给查询字段做tag:
#select count(type) as number_of_types group by time(10m)
#select count(type) from events group by time(1h) where time > now() - 3h
使用fill字段:
#select count(type) from events group by time(1h) fill(0)/fill(-1)/fill(null) where time > now() - 3h
数据聚合:
select count(type) from user_events merge admin_events group by time(10m)

使用API进行操作数据:

创建数据库:
curl -G "http://localhost:8086/query" --data-urlencode "q=create database mydb"
插入数据:
curl -XPOST 'http://localhost:8086/write?db=mydb' -d 'biaoge,name=xxbandy,xingqu=coding age=2'
curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary 'cpu_load_short,host=server01,region=us-west value=0.64 1434055562000000000'
curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary 'cpu_load_short,host=server02 value=0.67
cpu_load_short,host=server02,region=us-west value=0.55 1422568543702900257
cpu_load_short,direction=in,host=server01,region=us-west value=2.0 1422568543702900257'
将sql语句写入文件,并通过api插入:
#cat sql.txt
cpu_load_short,host=server02 value=0.67
cpu_load_short,host=server02,region=us-west value=0.55 1422568543702900257
cpu_load_short,direction=in,host=server01,region=us-west value=2.0 1422568543702900257
#curl -i -XPOST 'http://localhost:8086/write?db=mydb' --data-binary @cpu_data.txt

查询数据:(--data-urlencode "epoch=s" 指定时间序列 "chunk_size=20000" 指定查询块大小)
# curl -G http://localhost:8086/query?pretty=true --data-urlencode "db=ydb" --data-urlencode "q=select * from biaoge where xingqu='coding'"
数据分析:
#curl -G http://localhost:8086/query?pretty=true --data-urlencode "db=mydb" --data-urlencode "q=select mean(load) from cpu"
#curl -G http://localhost:8086/query?pretty=true --data-urlencode "db=mydb" --data-urlencode "q=select load from cpu"
可以看到load的值分别是42 78 15.4;用mean(load)求出来的值为45,13
curl -G http://localhost:8086/query?pretty=true --data-urlencode "db=ydb" --data-urlencode "q=select mean(load) from cpu where host='server01'"

使用influxdb提供的web界面进行操作:

这里只是简单的介绍了influxdb的使用,后期如果想在grafana中汇聚并完美地展示数据,可能需要熟悉influxdb的各种查询语法。(其实就是sql语句的一些使用技巧,聚合函数的使用,子查询等等)

 

注意:原创著作,转载请联系作者!

© 著作权归作者所有

Andy-xu
粉丝 113
博文 105
码字总数 197073
作品 0
大兴
运维
私信 提问
.NET Core微服务之基于App.Metrics+InfluxDB+Grafana实现统一性能监控

Tip: 此篇已加入.NET Core微服务基础系列文章索引 一、关于App.Metrics+InfluxDB+Grafana 1.1 App.Metrics      App.Metrics是一款开源的支持.NET Core的监控插件,它可以支持跑在.NET ...

Edison Chou
2018/07/29
0
0
Docker可视化监控?看这篇文章

欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由CodeSheep 发表于云+社区专栏 概述 性能监控是容器服务必不可少的基础设施,容器化应用运行于宿主机上,我们需要知道该容器...

腾讯云加社区
2018/07/06
0
0
jmxtrans+influxdb+grafana监控zookeeper实战

序 本文主要研究一下如何使用jmxtrans+influxdb+granfa监控zookeeper 配置zookeeper jmx 在conf目录下新增zookeeper-env.sh,并使用chmod +x赋予执行权限,内容如下 指定JMXPORT为8999 搭建i...

go4it
2018/10/04
178
0
springboot2输出metrics到influxdb

序 本文主要研究一下如何将springboot2的metrics输出到influxdb maven 配置 influx 启动之后创建数据库 命令行创建 rest接口创建 返回 或者直接配置文件指定auto-create-db=true,就无需额外...

go4it
2018/06/17
687
1
Docker 容器监控系统初探

本文已获得原作者 七把刀_授权。 随着线上服务的全面 docker 化,对 docker 容器的监控就很重要了。SA 的监控系统是物理机的监控,在一个物理机跑多个容器的情况下,我们是没法从一个监控图表...

掘金官方
2018/07/06
0
0

没有更多内容

加载失败,请刷新页面

加载更多

SpringBoot-MVC RequestBody中LocalDateTime的自适应配置

请求的json报文中可能会出现 一下几种: ['2019-01-01','2019-01-01 12:03:34','20190101120334'] 但是接收的Request实体类日期字段是LocalDateTime类型 LocalDateTime applyDate; 希望的情况......

汉堡OSC
21分钟前
4
0
小招喵所在的国家正处于怪兽入侵的战场中,这个国家一共有n+1个城市

import java.util.Arrays; import java.util.Scanner; public class test3 { public static long max=0;public static void main(String[] args) { Scanner sc = new Scanner(System.i......

南桥北木
23分钟前
3
0
活动策划思维导图模板分享,怎样绘制思维导图操作方法介绍

对于一场活动的举办可以事先使用思维导图简略的将整个过程进行总结归纳使用,这样清晰的思维导图即利于工作的进行,也可以清晰明了了熟悉整个过程,下面是为大家分享的几款活动策划思维导图模...

干货趣分享
29分钟前
4
0
Android高级xml布局之输入框EditText设计

今天给大家介绍一下如何实现一款简约时尚的安卓登陆界面。大家先看一下效果图 当用户输入时动态出现删除按钮 现在先罗列一下技术点: 1.如何使用圆角输入框和按钮背景 2.如何实现“手机号”、...

shzwork
53分钟前
4
0
RxJava进行单元测试的方式

@Test public void completeTask_retrievedTaskIsComplete() { // Given a new task in the persistent repository final Task newTask = new Task(TITLE, ""); ......

SuShine
56分钟前
5
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部