文档章节

HashMap(Fail-Fast机制)

大白来袭
 大白来袭
发布于 2017/06/04 22:27
字数 5832
阅读 53
收藏 0

之前的List,讲了ArrayListLinkedList,最后讲到了CopyOnWriteArrayList,就前两者而言,反映的是两种思想:

(1)ArrayList以数组形式实现,顺序插入、查找快,插入、删除较慢

(2)LinkedList以链表形式实现,顺序插入、查找较慢,插入、删除方便

那么是否有一种数据结构能够结合上面两种的优点呢?有,答案就是HashMap。

在 Java 编程语言中,最基本的结构就是两种,一个是数组,另外一个是指针(链表),HashMap 就是通过这两个数据结构实现的一个“链表散列”。非常常见、方便和有用的集合,是一种键值对(K-V)形式的存储结构,基于哈希表的 Map 接口的非同步实现。

图1

另外需要关注HashMap的四个特点:

关注点 结论
是否允许为空 key和value都允许为空
是否允许重复数据 key重复会覆盖,value允许重复
是否有序 无序(无序指的是遍历时,得到的元素顺序基本不可能按put的顺序)
是否线程安全 非线程安全(含修改的多个线程同时访问一个hashmap时,必须保持外部同步)

从上面结构图中可以看出,HashMap 底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个 HashMap 的时候,就会初始化一个数组。

创建

我们通过 JDK 中的 HashMap 源码进行一些学习,首先看一下构造函数:

public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        // Find a power of 2 >= initialCapacity
        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;

        this.loadFactor = loadFactor;
        threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
        table = new Entry[capacity];
        useAltHashing = sun.misc.VM.isBooted() &&
                (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
        init();
}

我们着重看一下第 18 行代码table = new Entry[capacity];。这不就是 Java 中数组的创建方式吗?也就是说在构造函数中,其创建了一个 Entry 的数组,其大小为 capacity( capacity 表示初始容量。由于迭代 collection 视图所需的时间与 HashMap 实例的“容量”[桶的数量]及其大小[键-值映射关系数]成比例。所以,如果迭代性能很重要,则不要将初始容量设置得太高或将加载因子设置得太低)。 一般常用下面无参的默认构造方法。

    public HashMap() {
         this.loadFactor = DEFAULT_LOAD_FACTOR;
         threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
         table = new Entry[DEFAULT_INITIAL_CAPACITY];
         init();
    }

注意一下第5行的init()是个空方法,它是HashMap的子类比如LinkedHashMap构造的时候使用的。 DEFAULT_INITIAL_CAPACITY为16,也就是说,HashMap在new的时候构造出了一个容量大小为16的Entry数组。

resize(rehash)

当 HashMap 中的元素越来越多的时候,hash 冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对 HashMap 的数组进行扩容,数组扩容这个操作也会出现在 ArrayList 中,这是一个常用的操作,而在 HashMap 数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是 resize。

那么 HashMap 什么时候进行扩容呢?当 HashMap 中的元素个数超过数组大小 *loadFactor时,就会进行数组扩容,loadFactor的默认值为 0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为 16,那么当 HashMap 中元素个数超过 16*0.75=12 的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知 HashMap 中元素的个数,那么预设元素的个数能够有效的提高 HashMap 的性能

汇总一下上述几个构造器,关注HashMap的性能:

  • HashMap():构建一个初始容量为 16,负载因子为 0.75 的 HashMap。
  • HashMap(int initialCapacity):构建一个初始容量为 initialCapacity,负载因子为 0.75 的 HashMap。
  • HashMap(int initialCapacity, float loadFactor):以指定初始容量、指定的负载因子创建一个 HashMap。

HashMap 的基础构造器 HashMap(int initialCapacity, float loadFactor) 带有两个参数,它们是初始容量 initialCapacity 和负载因子 loadFactor。

负载因子 loadFactor 衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是 O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。

HashMap 的实现中,通过 threshold 字段来判断 HashMap 的最大容量:

        threshold = (int)(capacity * loadFactor);

结合负载因子的定义公式可知,threshold 就是在此 loadFactor 和 capacity 对应下允许的最大元素数目,超过这个数目就重新 resize,以降低实际的负载因子。默认的的负载因子 0.75 是对空间和时间效率的一个平衡选择。当容量超出此最大容量时, resize 后的 HashMap 容量是容量的两倍。

最后,那 Entry 又是什么结构呢?看一下源码:

static class Entry<K,V> implements Map.Entry<K,V> {
    final K key;
    V value;
    Entry<K,V> next;
    final int hash;
    ……
}

Entry 是一个 static class,其中包含了 key 和 value,也就是键值对,另外还包含了一个 next 的 Entry 指针。我们可以总结出:Entry 就是数组中的元素,每个Entry 其实就是一个 key-value 对,它持有一个指向下一个元素的引用,这就构成了单向链表(只有Entry的后继Entry,而没有Entry的前驱Entry)。

核心方法

存储

/**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
public V put(K key, V value) {
        //其允许存放null的key和null的value
        //当其key为null时,调用putForNullKey方法,放入到table[0]的这个位置
        if (key == null)
            return putForNullKey(value);
        //通过调用hash方法对key进行哈希,得到哈希之后的数值。
        //hash将HashCode做一次打乱操作,其目的是为了尽可能的让键值对可以分不到不同的桶中
        int hash = hash(key);
        //根据上一步骤中求出的hash得到在数组中是索引i
        int i = indexFor(hash, table.length);
        //如果i处的Entry不为null,则通过其next指针不断遍历e元素的下一个元素。
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }

        modCount++;
        addEntry(hash, key, value, i);
        return null;
}

我们看一下方法的标准注释:在注释中首先提到了,当我们 put 的时候,如果 key 存在了,那么新的 value 会代替旧的 value,并且如果 key 存在的情况下,该方法返回的是旧的value,如果 key 不存在,那么返回 null。

从上面的源代码中可以看出:当我们往 HashMap 中 put 元素的时候,先根据 key 的 hashCode 重新计算 hash 值,根据 hash 值得到这个元素在数组中的位置(即下标),如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。 首次插入如下图。

第二次插入,判断后发现存在相同key处理后的hash值,如下图链表形式插入。

addEntry(hash, key, value, i)方法根据计算出的 hash 值,将 key-value 对放在数组 table 的 i 索引处。addEntry 是 HashMap 提供的一个包访问权限的方法,代码如下:

/**
     * Adds a new entry with the specified key, value and hash code to
     * the specified bucket.  It is the responsibility of this
     * method to resize the table if appropriate.
     *
     * Subclass overrides this to alter the behavior of put method.
     */
void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
}
void createEntry(int hash, K key, V value, int bucketIndex) {
        // 获取指定 bucketIndex 索引处的 Entry
        Entry<K,V> e = table[bucketIndex];
        // 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entr
        table[bucketIndex] = new Entry<>(hash, key, value, e);
        size++;
}

当系统决定存储 HashMap 中的 key-value 对时,完全没有考虑 Entry 中的 value,仅仅只是根据 key 来计算并决定每个 Entry 的存储位置。我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可。

hash(int h)方法根据 key 的 hashCode 重新计算一次散列。此算法加入了高位计算,防止低位不变,高位变化时,造成的 hash 冲突。

final int hash(Object k) {
        int h = 0;
        if (useAltHashing) {
            if (k instanceof String) {
                return sun.misc.Hashing.stringHash32((String) k);
            }
            h = hashSeed;
        }
        //得到k的hashcode值
        h ^= k.hashCode();
        //进行计算
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
}

我们可以看到在 HashMap 中要找到某个元素,需要根据 key 的 hash 值来求得对应数组中的位置。如何计算这个位置就是 hash 算法。前面说过 HashMap 的数据结构是数组和链表的结合,所以我们当然希望这个 HashMap 里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用 hash 算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表,这样就大大优化了查询的效率。

对于任意给定的对象,只要它的 hashCode() 返回值相同,那么程序调用 hash(int h) 方法所计算得到的 hash 码值总是相同的。我们首先想到的就是把 hash 值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,在 HashMap 中是这样做的:调用 indexFor(int h, int length) 方法来计算该对象应该保存在 table 数组的哪个索引处。indexFor(int h, int length) 方法的代码如下:

/**
     * Returns index for hash code h.
     */
static int indexFor(int h, int length) {  
    return h & (length-1);
}

这个方法非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而 HashMap 底层数组的长度总是 2 的 n 次方,这是 HashMap 在速度上的优化。在 HashMap 构造器中有如下代码:

// Find a power of 2 >= initialCapacity
int capacity = 1;
    while (capacity < initialCapacity)  
        capacity <<= 1;

这段代码保证初始化时 HashMap 的容量总是 2 的 n 次方,即底层数组的长度总是为 2 的 n 次方。

当 length 总是 2 的 n 次方时,h& (length-1)运算等价于对 length 取模,也就是 h%length,但是 & 比 % 具有更高的效率。这看上去很简单,其实比较有玄机的,我们举个例子来说明:

假设数组长度分别为 15 和 16,优化后的 hash 码分别为 8 和 9,那么 & 运算后的结果如下:

h & (table.length-1) hash   table.length-1  
8 & (15-1): 0100 & 1110 = 0100
9 & (15-1): 0101 & 1110 = 0100
8 & (16-1): 0100 & 1111 = 0100
9 & (16-1): 0101 & 1111 = 0101

从上面的例子中可以看出:当它们和 15-1(1110)“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8 和 9 会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为 15 的时候,hash 值会与 15-1(1110)进行“与”,那么最后一位永远是 0,而 0001,0011,0101,1001,1011,0111,1101 这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了 查询的效率!而当数组长度为16时,即为2的n次方时,2n-1 得到的二进制数的每个位上的值都为 1,这使得在低位上&时,得到的和原 hash 的低位相同,加之 hash(int h)方法对 key 的 hashCode 的进一步优化,加入了高位计算,就使得只有相同的 hash 值的两个值才会被放到数组中的同一个位置上形成链表。

所以说,当数组长度为 2 的 n 次幂的时候,不同的 key 算得的 index 相同几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。
 

读取

/**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        if (key == null)
            return getForNullKey();
        Entry<K,V> entry = getEntry(key);

        return null == entry ? null : entry.getValue();
    }
    final Entry<K,V> getEntry(Object key) {
        int hash = (key == null) ? 0 : hash(key);
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }

有了上面存储时的 hash 算法作为基础,理解起来这段代码就很容易了。从上面的源代码中可以看出:从 HashMap 中 get 元素时,首先计算 key 的 hashCode,找到数组中对应位置的某一元素,然后通过 key 的 equals 方法在对应位置的链表中找到需要的元素。

归纳一下

简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据 hash 算法来决定其在数组中的存储位置,在根据 equals 方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry 时,也会根据 hash 算法找到其在数组中的存储位置,再根据 equals 方法从该位置上的链表中取出该Entry。

Fail-Fast 机制

原理

我们知道 java.util.HashMap 不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了 map,那么将抛出 ConcurrentModificationException,这就是所谓 fail-fast 策略。

fail-fast 机制是 java 集合(Collection)中的一种错误机制。 当多个线程对同一个集合的内容进行操作时,就可能会产生 fail-fast 事件。

例如:当某一个线程 A 通过 iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程 A 访问集合时,就会抛出 ConcurrentModificationException 异常,产生 fail-fast 事件。

这一策略在源码中的实现是通过 modCount 域,modCount 顾名思义就是修改次数,对 HashMap 内容(当然不仅仅是 HashMap 才会有,其他例如 ArrayList 也会)的修改都将增加这个值(大家可以再回头看一下其源码,在很多操作中都有 modCount++ 这句),那么在迭代器初始化过程中会将这个值赋给迭代器的 expectedModCount。

HashIterator() {
    expectedModCount = modCount;
    if (size > 0) { // advance to first entry
    Entry[] t = table;
    while (index < t.length && (next = t[index++]) == null)  
        ;
    }
}

在迭代过程中,判断 modCount 跟 expectedModCount 是否相等,如果不相等就表示已经有其他线程修改了 Map:

注意到 modCount 声明为 volatile,保证线程之间修改的可见性。

final Entry<K,V> nextEntry() {
    if (modCount != expectedModCount)
        throw new ConcurrentModificationException();

在 HashMap 的 API 中指出:

由所有 HashMap 类的“collection 视图方法”所返回的迭代器都是快速失败的:在迭代器创建之后,如果从结构上对映射进行修改,除非通过迭代器本身的 remove 方法,其他任何时间任何方式的修改,迭代器都将抛出 ConcurrentModificationException。因此,面对并发的修改,迭代器很快就会完全失败,而不冒在将来不确定的时间发生任意不确定行为的风险。

注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

解决方案

在上文中也提到,fail-fast 机制,是一种错误检测机制。它只能被用来检测错误,因为 JDK 并不保证 fail-fast 机制一定会发生。若在多线程环境下使用 fail-fast 机制的集合,建议使用“java.util.concurrent 包下的类”去取代“java.util 包下的类”。

HashMap 的两种遍历方式

第一种

  Map map = new HashMap();
  Iterator iter = map.entrySet().iterator();
  while (iter.hasNext()) {
  Map.Entry entry = (Map.Entry) iter.next();
  Object key = entry.getKey();
  Object val = entry.getValue();
  }

效率高,以后一定要使用此种方式!

第二种

  Map map = new HashMap();
  Iterator iter = map.keySet().iterator();
  while (iter.hasNext()) {
  Object key = iter.next();
  Object val = map.get(key);
  }

效率低,以后尽量少使用!

~~~~~~~~~~~~~~~~~~~~~~~~~~End~~~~~~~~~~~~~~~~~~~~~~~~~

 

回顾HashCode的重要性

HashMap中对Key的HashCode要做一次rehash,防止一些糟糕的Hash算法生成的糟糕的HashCode,那么为什么要防止糟糕的HashCode?

糟糕的HashCode意味着的是Hash冲突,即多个不同的Key可能得到的是同一个HashCode,糟糕的Hash算法意味着的就是Hash冲突的概率增大,这意味着HashMap的性能将下降,表现在两方面:

1、 有10个Key,可能6个Key的HashCode都相同,另外四个Key所在的Entry均匀分布在table的位置上,而某一个位置上却连接了6个 Entry。这就失去了HashMap的意义,HashMap这种数据结构性高性能的前提是,Entry均匀地分布在table位置上,但现在确是1 1 1 1 6的分布。所以,我们要求HashCode有很强的随机性,这样就尽可能地可以保证了Entry分布的随机性,提升了HashMap的效率。

2、HashMap在一个某个table位置上遍历链表的时候的代码:

if (e.hash == hash && ((k = e.key) == key || key.equals(k)))

看 到,由于采用了”&&”运算符,因此先比较HashCode,HashCode都不相同就直接pass了,不会再进行equals比较 了。HashCode因为是int值,比较速度非常快,而equals方法往往会对比一系列的内容,速度会慢一些。Hash冲突的概率大,意味着 equals比较的次数势必增多,必然降低了HashMap的效率了。 

 

HashMap的table为什么是transient的?

一个非常细节的地方:

transient Entry[] table;

看到table用了transient修饰,也就是说table里面的内容全都不会被序列化,不知道大家有没有想过这么写的原因?

在我看来,这么写是非常必要的。因为HashMap是基于HashCode的,HashCode作为Object的方法,是native的:

public native int hashCode();

这意味着的是:HashCode和底层实现相关,不同的虚拟机可能有不同的HashCode算法。再进一步说得明白些就是,可能同一个Key在虚拟机A上的HashCode=1,在虚拟机B上的HashCode=2,在虚拟机C上的HashCode=3。

这就有问题了,Java自诞生以来,就以跨平台性作为最大卖点,好了,如果table不被transient修饰,在虚拟机A上可以用的程序到虚拟机B上可以用的程序就不能用了,失去了跨平台性,因为:

1、Key在虚拟机A上的HashCode=100,连在table[4]上

2、Key在虚拟机B上的HashCode=101,这样,就去table[5]上找Key,明显找不到

整个代码就出问题了。因此,为了避免这一点,Java采取了重写自己序列化table的方法,在writeObject选择将key和value追加到序列化的文件最后面:

private void writeObject(java.io.ObjectOutputStream s)

        throws IOException

{
Iterator<Map.Entry<K,V>> i =

    (size > 0) ? entrySet0().iterator() : null;

// Write out the threshold, loadfactor, and any hidden stuff

s.defaultWriteObject();

// Write out number of buckets

s.writeInt(table.length);

// Write out size (number of Mappings)

s.writeInt(size);

    // Write out keys and values (alternating)

if (i != null) {

 while (i.hasNext()) {

    Map.Entry<K,V> e = i.next();

    s.writeObject(e.getKey());

    s.writeObject(e.getValue());

    }

    }
}

而在readObject的时候重构HashMap数据结构:

private void readObject(java.io.ObjectInputStream s)
         throws IOException, ClassNotFoundException
{
// Read in the threshold, loadfactor, and any hidden stuff
s.defaultReadObject();

// Read in number of buckets and allocate the bucket array;
int numBuckets = s.readInt();
table = new Entry[numBuckets];

init();  // Give subclass a chance to do its thing.

// Read in size (number of Mappings)
int size = s.readInt();

// Read the keys and values, and put the mappings in the HashMap

for (int i=0; i<size; i++) {
    K key = (K) s.readObject();
    V value = (V) s.readObject();
    putForCreate(key, value);

}
}

一种麻烦的方式,但却保证了跨平台性。

这个例子也告诉了我们:尽管使用的虚拟机大多数情况下都是HotSpot,但是也不能对其它虚拟机不管不顾,有跨平台的思想是一件好事。

HashMap和Hashtable的区别

HashMap和Hashtable是一组相似的键值对集合,它们的区别也是面试常被问的问题之一,我这里简单总结一下HashMap和Hashtable的区别:

1、Hashtable是线程安全的,Hashtable所有对外提供的方法都使用了synchronized,也就是同步,而HashMap则是线程非安全的

2、Hashtable不允许空的value,空的value将导致空指针异常,而HashMap则无所谓,没有这方面的限制

3、上面两个缺点是最主要的区别,另外一个区别无关紧要,我只是提一下,就是两个的rehash算法不同,Hashtable的是:

private int hash(Object k) {
    // hashSeed will be zero if alternative hashing is disabled.
    return hashSeed ^ k.hashCode();
}

这个hashSeed是使用sun.misc.Hashing类的randomHashSeed方法产生的。HashMap的rehash算法上面看过了,也就是:

static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).

    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

 

本文转载自:https://blog.csdn.net/it_dx/article/details/73477647

大白来袭
粉丝 4
博文 41
码字总数 13667
作品 0
海淀
程序员
私信 提问
java HashMap与Hashtable区别

1.HashMap几乎可以等价于Hashtable,除了HashMap是非synchronized的,并可以接受null(HashMap可以接受为null的键值(key)和值(value),而Hashtable则不行)。 2.HashMap是非synchronized,而H...

随性_
2016/05/11
108
0
HashMap Hashtable 的区别

Hashtable 和 HashMap 作为 Map 的基本特性 两者都实现了Map接口,基本特性相同 - 对同一个Key,只会有一个对应的value值存在 - 如何算是同一个Key? 首先,两个key对象的hash值相同,其次,...

钟声已经敲响
2016/10/21
39
0
Java中HashMap和HashTable区别

前几天被一家公司电面的时候被问到HashMap和HashTable的区别,当时就懵逼了,hashTable是个啥?从来没用过啊,于是电面完之后马上google了一把,这回涨姿势了; HashMap和HashTable同属于Jav...

Panshuyang
2016/03/23
231
0
Java基础——HashMap源码分析

Java基础——HashMap源码分析 本篇文章包含以下内容,请点击左上角+号展开目录 什么是HashMap HashMap的数据结构 HashMap的存储 HashMap的读取 HashMap简单归纳 HashMap的hash算法 HashMap的...

qq_30379689
2017/05/21
0
0
hashMap与hashTable的区别

首先请先阅读这两个的源码。 一、hashMap、hashTable都是Map接口的实现类,但是hashMap类继承自抽象类abstractMap类,hashTable继承自 Dictionary类,该类在jdk中这样描述: 可见该类已经过时...

J星星点灯
2018/02/03
0
0

没有更多内容

加载失败,请刷新页面

加载更多

java数据类型

基本类型: 整型:Byte,short,int,long 浮点型:float,double 字符型:char 布尔型:boolean 引用类型: 类类型: 接口类型: 数组类型: Byte 1字节 八位 -128 -------- 127 short 2字节...

audience_1
24分钟前
2
0
太全了|万字详解Docker架构原理、功能及使用

一、简介 1、了解Docker的前生LXC LXC为Linux Container的简写。可以提供轻量级的虚拟化,以便隔离进程和资源,而且不需要提供指令解释机制以及全虚拟化的其他复杂性。相当于C++中的NameSpa...

Java技术剑
25分钟前
3
0
Wifiphisher —— 非常非常非常流氓的 WIFI 网络钓鱼框架

编者注:这是一个非常流氓的 WIFI 网络钓鱼工具,甚至可能是非法的工具(取决于你的使用场景)。在没有事先获得许可的情况下使用 Wifiphisher 攻击基础网络设施将被视为非法活动。使用时请遵...

红薯
54分钟前
40
1
MongoDB 4 on CentOS 7安装指南

本教程为CentOS x86_64 7.x操作系统下,MongoDB Community x86_64 4.2(GA)安装指南。 安装方式一:yum repo在线安装 [此方式较为简单,官方推荐] Step1:新建MongDB社区版Yum镜像源。 # vim ...

王焱君
56分钟前
4
0
go-micro 入门教程1.搭建 go-micro环境

微服务的本质是让专业的人做专业的事情,做出更好的东西。 golang具备高并发,静态编译等特性,在性能、安全等方面具备非常大的优势。go-micro是基于golang的微服务编程框架,go-micro操作简单...

非正式解决方案
今天
9
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部