文档章节

浅谈Web网站架构演变过程及各阶段所用的技术和架构设计

吴伟祥
 吴伟祥
发布于 2019/01/09 15:41
字数 7888
阅读 17
收藏 0

前言

  

  我们以javaweb为例,来搭建一个简单的电商系统,看看这个系统可以如何一步步演变。

 

  该系统具备的功能:

 

  • 用户模块:用户注册和管理
  • 商品模块:商品展示和管理
  • 交易模块:创建交易和管理

  

阶段一、单机构建网站

  网站的初期,我们经常会在单机上跑我们所有的程序和软件。此时我们使用一个容器,如tomcat、jetty、jboos,然后直接使用JSP/servlet技术,或者使用一些开源的框架如maven+spring+struct+hibernate、maven+spring+springmvc+mybatis;最后再选择一个数据库管理系统来存储数据,如mysql、sqlserver、oracle,然后通过JDBC进行数据库的连接和操作。

  把以上的所有软件都装载同一台机器上,应用跑起来了,也算是一个小系统了。此时系统结果如下:

 

 

阶段二、应用服务器与数据库分离

  随着网站的上线,访问量逐步上升,服务器的负载慢慢提高,在服务器还没有超载的时候,我们应该就要做好准备,提升网站的负载能力。假如我们代码层面已难以优化,在不提高单台机器的性能的情况下,增加机器是一个不错的方式,不仅可以有效地提高系统的负载能力,而且性价比高。

  增加的机器用来做什么呢?此时我们可以把数据库,web服务器拆分开来,这样不仅提高了单台机器的负载能力,也提高了容灾能力。

  应用服务器与数据库分开后的架构如下图所示:

 

阶段三、应用服务器集群

  随着访问量继续增加,单台应用服务器已经无法满足需求了。在假设数据库服务器没有压力的情况下,我们可以把应用服务器从一台变成了两台甚至多台,把用户的请求分散到不同的服务器中,从而提高负载能力。多台应用服务器之间没有直接的交互,他们都是依赖数据库各自对外提供服务。著名的做故障切换的软件有keepalived,keepalived是一个类似于layer3、4、7交换机制的软件,他不是某个具体软件故障切换的专属品,而是可以适用于各种软件的一款产品。keepalived配合上ipvsadm又可以做负载均衡,可谓是神器。

  我们以增加了一台应用服务器为例,增加后的系统结构图如下:

 

  系统演变到这里,将会出现下面四个问题

  1. 用户的请求由谁来转发到到具体的应用服务器
  2. 有什么转发的算法
  3. 应用服务器如何返回用户的请求
  4. 用户如果每次访问到的服务器不一样,那么如何维护session的一致性

 

  我们来看看解决问题的方案

 

  1、第一个问题即是负载均衡的问题,一般有5种解决方案:

    1、http重定向。HTTP重定向就是应用层的请求转发。用户的请求其实已经到了HTTP重定向负载均衡服务器,服务器根据算法要求用户重定向,用户收到重定向请求后,再次请求真正的集群

      优点:简单。

      缺点:性能较差。

    2、DNS域名解析负载均衡。DNS域名解析负载均衡就是在用户请求DNS服务器,获取域名对应的IP地址时,DNS服务器直接给出负载均衡后的服务器IP。

      优点:交给DNS,不用我们去维护负载均衡服务器。

      缺点:当一个应用服务器挂了,不能及时通知DNS,而且DNS负载均衡的控制权在域名服务商那里,网站无法做更多的改善和更强大的管理。

    3、反向代理服务器。在用户的请求到达反向代理服务器时(已经到达网站机房),由反向代理服务器根据算法转发到具体的服务器。常用的apache,nginx都可以充当反向代理服务器。

      优点:部署简单。

      缺点:代理服务器可能成为性能的瓶颈,特别是一次上传大文件。

    4、IP层负载均衡。在请求到达负载均衡器后,负载均衡器通过修改请求的目的IP地址,从而实现请求的转发,做到负载均衡。

      优点:性能更好。

      缺点:负载均衡器的宽带成为瓶颈。

    5、数据链路层负载均衡。在请求到达负载均衡器后,负载均衡器通过修改请求的mac地址,从而做到负载均衡,与IP负载均衡不一样的是,当请求访问完服务器之后,直接返回客户。而无需再经过负载均衡器。

 

  2、第二个问题即是集群调度算法问题,常见的调度算法有10种。

    1、rr 轮询调度算法。顾名思义,轮询分发请求。

      优点:实现简单

      缺点:不考虑每台服务器的处理能力

    2、wrr 加权调度算法。我们给每个服务器设置权值weight,负载均衡调度器根据权值调度服务器,服务器被调用的次数跟权值成正比。

      优点:考虑了服务器处理能力的不同

    3、sh 原地址散列:提取用户IP,根据散列函数得出一个key,再根据静态映射表,查处对应的value,即目标服务器IP。过目标机器超负荷,则返回空。

    4、dh 目标地址散列:同上,只是现在提取的是目标地址的IP来做哈希。

      优点:以上两种算法的都能实现同一个用户访问同一个服务器。

    5、lc 最少连接。优先把请求转发给连接数少的服务器。

      优点:使得集群中各个服务器的负载更加均匀。

    6、wlc 加权最少连接。在lc的基础上,为每台服务器加上权值。算法为:(活动连接数*256+非活动连接数)÷权重 ,计算出来的值小的服务器优先被选择。

      优点:可以根据服务器的能力分配请求。

    7、sed 最短期望延迟。其实sed跟wlc类似,区别是不考虑非活动连接数。算法为:(活动连接数+1)*256÷权重,同样计算出来的值小的服务器优先被选择。

    8、nq 永不排队。改进的sed算法。我们想一下什么情况下才能“永不排队”,那就是服务器的连接数为0的时候,那么假如有服务器连接数为0,均衡器直接把请求转发给它,无需经过sed的计算。

    9、LBLC 基于局部性的最少连接。均衡器根据请求的目的IP地址,找出该IP地址最近被使用的服务器,把请求转发之,若该服务器超载,最采用最少连接数算法。

    10、LBLCR 带复制的基于局部性的最少连接。均衡器根据请求的目的IP地址,找出该IP地址最近使用的“服务器”,注意,并不是具体某个服务器,然后采用最少连接数从该组中挑出具体的某台服务器出来,把请求转发之。若该服务器超载,那么根据最少连接数算法,在集群的本服务器组的服务器中,找出一台服务器出来,加入本服务器组,然后把请求转发之。

 

  3、第三个问题是集群模式问题,一般3种解决方案:

    1、NAT:负载均衡器接收用户的请求,转发给具体服务器,服务器处理完请求返回给均衡器,均衡器再重新返回给用户。

    2、DR:负载均衡器接收用户的请求,转发给具体服务器,服务器出来玩请求后直接返回给用户。需要系统支持IP Tunneling协议,难以跨平台。

    3、TUN:同上,但无需IP Tunneling协议,跨平台性好,大部分系统都可以支持。

 

  4、第四个问题是session问题,一般有4种解决方案:

    1、Session Sticky。session sticky就是把同一个用户在某一个会话中的请求,都分配到固定的某一台服务器中,这样我们就不需要解决跨服务器的session问题了,常见的算法有ip_hash法,即上面提到的两种散列算法。

      优点:实现简单。

      缺点:应用服务器重启则session消失。

    2、Session Replication。session replication就是在集群中复制session,使得每个服务器都保存有全部用户的session数据。

      优点:减轻负载均衡服务器的压力,不需要要实现ip_hasp算法来转发请求。

      缺点:复制时宽带开销大,访问量大的话session占用内存大且浪费。

    3、Session数据集中存储:session数据集中存储就是利用数据库来存储session数据,实现了session和应用服务器的解耦。

      优点:相比session replication的方案,集群间对于宽带和内存的压力减少了很多。

      缺点:需要维护存储session的数据库。

    4、Cookie Base:cookie base就是把session存在cookie中,有浏览器来告诉应用服务器我的session是什么,同样实现了session和应用服务器的解耦。

      优点:实现简单,基本免维护。

      缺点:cookie长度限制,安全性低,宽带消耗。

  

  值得一提的是

  nginx目前支持的负载均衡算法有wrr、sh(支持一致性哈希)、fair(本人觉得可以归结为lc)。但nginx作为均衡器的话,还可以一同作为静态资源服务器。

  keepalived+ipvsadm比较强大,目前支持的算法有:rr、wrr、lc、wlc、lblc、sh、dh

  keepalived支持集群模式有:NAT、DR、TUN

  nginx本身并没有提供session同步的解决方案,而apache则提供了session共享的支持。

 

  好了,解决了以上的问题之后,系统的结构如下

 

阶段四、数据库读写分离化

  上面我们总是假设数据库负载正常,但随着访问量的的提高,数据库的负载也在慢慢增大。那么可能有人马上就想到跟应用服务器一样,把数据库一份为二再负载均衡即可。但对于数据库来说,并没有那么简单。假如我们简单的把数据库一分为二,然后对于数据库的请求,分别负载到A机器和B机器,那么显而易见会造成两台数据库数据不统一的问题。那么对于这种情况,我们可以先考虑使用读写分离的方式。

  读写分离后的数据库系统结构如下:

   这个结构变化后也会带来两个问题

  1. 主从数据库之间数据同步问题
  2. 应用对于数据源的选择问题

  解决问题方案

  1. 我们可以使用MYSQL自带的master+slave的方式实现主从复制。
  2. 采用第三方数据库中间件,例如mycat。mycat是从cobar发展而来的,而cobar是阿里开源的数据库中间件,后来停止开发。mycat是国内比较好的mysql开源数据库分库分表中间件。

 

阶段五、用搜索引擎缓解读库的压力

  数据库做读库的话,常常对模糊查找力不从心,即使做了读写分离,这个问题还未能解决。以我们所举的交易网站为例,发布的商品存储在数据库中,用户最常使用的功能就是查找商品,尤其是根据商品的标题来查找对应的商品。对于这种需求,一般我们都是通过like功能来实现的,但是这种方式的代价非常大。此时我们可以使用搜索引擎的倒排索引来完成。

  搜索引擎具有以下优点

  • 它能够大大提高查询速度。

 

  引入搜索引擎后也会带来以下的开销

  • 带来大量的维护工作,我们需要自己实现索引的构建过程,设计全量/增加的构建方式来应对非实时与实时的查询需求。
  • 需要维护搜索引擎集群

        搜索引擎并不能替代数据库,他解决了某些场景下的“读”的问题,是否引入搜索引擎,需要综合考虑整个系统的需求。引入搜索引擎后的系统结构如下:

 

阶段六、用缓存缓解读库的压力

  1、后台应用层和数据库层的缓存

  随着访问量的增加,逐渐出现了许多用户访问同一部分内容的情况,对于这些比较热门的内容,没必要每次都从数据库读取。我们可以使用缓存技术,例如可以使用google的开源缓存技术guava或者使用memcacahe作为应用层的缓存,也可以使用redis作为数据库层的缓存。

  另外,在某些场景下,关系型数据库并不是很适合,例如我想做一个“每日输入密码错误次数限制”的功能,思路大概是在用户登录时,如果登录错误,则记录下该用户的IP和错误次数,那么这个数据要放在哪里呢?假如放在内存中,那么显然会占用太大的内容;假如放在关系型数据库中,那么既要建立数据库表,还要简历对应的java bean,还要写SQL等等。而分析一下我们要存储的数据,无非就是类似{ip:errorNumber}这样的key:value数据。对于这种数据,我们可以用NOSQL数据库来代替传统的关系型数据库。

 

  2、页面缓存

  除了数据缓存,还有页面缓存。比如使用HTML5的localstroage或者cookie。

 

  优点

  • 减轻数据库的压力
  • 大幅度提高访问速度

 

  缺点

  • 需要维护缓存服务器
  • 提高了编码的复杂性

 

  值得一提的是

  缓存集群的调度算法不同与上面提到的应用服务器和数据库。最好采用“一致性哈希算法”,这样才能提高命中率。这个就不展开讲了,有兴趣的可以查阅相关资料。

 

  加入缓存后的结构:

 

 

阶段七、数据库水平拆分与垂直拆分

  我们的网站演进到现在,交易、商品、用户的数据都还在同一个数据库中。尽管采取了增加缓存,读写分离的方式,但随着数据库的压力继续增加,数据库的瓶颈越来越突出,此时,我们可以有数据垂直拆分和水平拆分两种选择。

  7.1、数据垂直拆分

  垂直拆分的意思是把数据库中不同的业务数据拆分道不同的数据库中,结合现在的例子,就是把交易、商品、用户的数据分开。

  优点

  • 解决了原来把所有业务放在一个数据库中的压力问题。
  • 可以根据业务的特点进行更多的优化

 

  缺点

  • 需要维护多个数据库

 

  问题

  1. 需要考虑原来跨业务的事务
  2. 跨数据库的join

  解决问题方案

  1. 我们应该在应用层尽量避免跨数据库的事物,如果非要跨数据库,尽量在代码中控制。
  2. 我们可以通过第三方应用来解决,如上面提到的mycat,mycat提供了丰富的跨库join方案,详情可参考mycat官方文档。

  垂直拆分后的结构如下

  7.2、数据水平拆分

  数据水平拆分就是把同一个表中的数据拆分到两个甚至多个数据库中。产生数据水平拆分的原因是某个业务的数据量或者更新量到达了单个数据库的瓶颈,这时就可以把这个表拆分到两个或更多个数据库中。

  优点

  • 如果我们能客服以上问题,那么我们将能够很好地对数据量及写入量增长的情况。

 

  问题:

  1. 访问用户信息的应用系统需要解决SQL路由的问题,因为现在用户信息分在了两个数据库中,需要在进行数据操作时了解需要操作的数据在哪里。
  2. 主键的处理也变得不同,例如原来自增字段,现在不能简单地继续使用了。
  3. 如果需要分页,就麻烦了。

  解决问题方案:

  1. 我们还是可以通过可以解决第三方中间件,如mycat。mycat可以通过SQL解析模块对我们的SQL进行解析,再根据我们的配置,把请求转发到具体的某个数据库。
  2. 我们可以通过UUID保证唯一或自定义ID方案来解决。
  3. mycat也提供了丰富的分页查询方案,比如先从每个数据库做分页查询,再合并数据做一次分页查询等等。

  数据水平拆分后的结构

 

阶段八、应用的拆分

  8.1、拆分应用

  随着业务的发展,业务越来越多,应用越来越大。我们需要考虑如何避免让应用越来越臃肿。这就需要把应用拆开,从一个应用变为俩个甚至更多。还是以我们上面的例子,我们可以把用户、商品、交易拆分开。变成“用户、商品”和“用户,交易”两个子系统。  

  拆分后的结构:

  问题

  1. 这样拆分后,可能会有一些相同的代码,如用户相关的代码,商品和交易都需要用户信息,所以在两个系统中都保留差不多的操作用户信息的代码。如何保证这些代码可以复用是一个需要解决的问题。

   解决问题:

  1. 通过走服务化的路线来解决

 

  8.2、走服务化的道路

  为了解决上面拆分应用后所出现的问题,我们把公共的服务拆分出来,形成一种服务化的模式,简称SOA。

  采用服务化之后的系统结构:

  优点

  • 相同的代码不会散落在不同的应用中了,这些实现放在了各个服务中心,使代码得到更好的维护。
  • 我们把对数据库的交互放在了各个服务中心,让”前端“的web应用更注重与浏览器交互的工作。

 

   问题:

  1. 如何进行远程的服务调用

   解决方法:

  1. 我们可以通过下面的引入消息中间件来解决

 

阶段九、引入消息中间件

  随着网站的继续发展,我们的系统中可能出现不同语言开发的子模块和部署在不同平台的子系统。此时我们需要一个平台来传递可靠的,与平台和语言无关的数据,并且能够把负载均衡透明化,能在调用过程中收集调用数据并分析之,推测出网站的访问增长率等等一系列需求,对于网站应该如何成长做出预测。开源消息中间件有阿里的dubbo,可以搭配Google开源的分布式程序协调服务zookeeper实现服务器的注册与发现。

  引入消息中间件后的结构:

  

 

十、总结

  以上的演变过程只是一个例子,并不适合所有的网站,实际中网站演进过程与自身业务和不同遇到的问题有密切的关系,没有固定的模式。只有认真的分析和不断地探究,才能发现适合自己网站的架构。

  

  本文有什么说错的地方,希望大家指出,让我好改正过来,多谢。

 

参考:

《大型网站技术架构:核心原理与案例分析》——李智慧 著

《大型网站系统与Java中间件实践》——曾宪杰 著

《MySQL性能调优与架构设计》——简朝阳 著

《keepalived权威指南》

《mycat权威指南》

《dubbo用户指南》

《计算机网络》

《操作系统》

 

 

 

电商网站架构案例分析

一、典型电商案例

电商网站:比如阿里巴巴,京东商城,国美在线,汽车之家等。大型门户一般是新闻类信息,可以使用CDN,静态化等方式优化,一些交互性比较多的网站,可能会引入更多的NOSQL,分布式缓存,使用高性能的通信框架等。电商网站具备以上两类的特点,比如产品详情可以采用CDN,静态化,交互性高的需要采用NOSQL等技术。因此,我们采用电商网站作为案例,进行分析。

二、电商网站需求

客户需求:

  • 建立一个全品类的电子商务网站(B2C),用户可以在线购买商品,可以在线支付,也可以货到付款;
  • 用户购买时可以在线与客服沟通;
  • 用户收到商品后,可以给商品打分,评价;
  • 目前有成熟的进销存系统;需要与网站对接;
  • 希望能够支持3~5年,业务的发展;
  • 预计3~5年用户数达到1000万;
  • 定期举办双11,双12,三八男人节等活动;
  • 其他的功能参考京东或国美在线等网站。

这里介绍一下需求功能矩阵

需求功能矩阵是一种十分全面的需求分析方法,它不会漏掉一些用传统需求管理方法容易漏掉的肺功能需求,因此推荐大家使用需求功能矩阵,进行需求描述。

一个典型电商网站的需求矩阵如下:

 

网站需求 功能需求 非功能需求
全品类的电子商务网站 分类管理,商品管理 方便进行多品类管理(灵活性)网站访问速度要快(高性能)图片存储的要求(海量小图片)
用户可以在线购买商品 会员管理,购物车,结算功能 良好购物体验(可用性,性能)
在线支付或货到付款 多种在线支付方式 支付过程要安全,数据加密(安全性)多种支付接口灵活切换(灵活性,扩展性)
可以在线与客服沟通 在线客服功能 可靠性:即时通讯
商品打分评价 商品评论  
目前有成熟的进销存系统 对接进销存 属于约束条件对接时要考虑数据一致性,鲁棒性
支持3~5年,业务的发展   属于约束条件伸缩性,可扩展性
3~5年用户数达到1000万   约束条件
举办双11,双12,三八男人节等活动 活动管理,秒杀 突增访问流量(可伸缩)实时性要求(高性能)
参考京东或国美在线   参考条件

以上是对电商网站需求的简单举例,目的是说明(1)需求分析的时候,要全面,大型分布式系统重点考虑非功能需求;(2)描述一个简单的电商需求场景,使大家对下一步的分析设计有个依据。

三、网站架构

上次我们小组博客的分析已经把最初的网站架构进行了介绍。随着目前网站用户量的激增,目前主流的网站架构已经发生了翻天覆地的变化。一般都会采用集群的方式,通过服务器集群之间的通信提高可访问数据量和保证访问的速度。

 

使用集群对应用服务器进行冗余,实现高可用;

使用数据库主备模式,实现数据备份和高可用;

四、系统容量预估

预估步骤:

  1. 注册用户数-日均UV量-每日的PV量-每天的并发量;
  2. 峰值预估:平常量的2~3倍;
  3. 根据并发量(并发,事务数),存储容量计算系统容量。

   (系统预估必须结合客户需求)

访问原则:20/80原则(上次已经介绍过)

容量预估:70/90原则:系统CPU一般维持在70%左右的水平,高峰期达到90%的水平,是不浪费资源,并比较稳定的。内存,IO类似。

以上预估仅供参考,因为服务器配置,业务逻辑复杂度等都有影响。在此CPU,硬盘,网络等不再进行评估。

五、网站架构优化

上次我们组介绍了反向代理CDN,多级缓存等优化技术,这次我们继续介绍一些典型的网站架构优化方法。

1.业务拆分

根据业务属性进行垂直切分,划分为产品子系统,购物子系统,支付子系统,评论子系统,客服子系统,接口子系统(对接如进销存,短信等外部系统)。

根据业务子系统进行等级定义,可分为核心系统和非核心系统。核心系统:产品子系统,购物子系统,支付子系统;非核心:评论子系统,客服子系统,接口子系统。

业务拆分作用:提升为子系统可由专门的团队和部门负责,专业的人做专业的事,解决模块之间耦合以及扩展性问题;每个子系统单独部署,避免集中部署导致一个应用挂了,全部应用不可用的问题。

等级定义作用:用于流量突发时,对关键应用进行保护,实现优雅降级;保护关键应用不受到影响。

拆分后的架构图:

 

2.应用集群部署(分布式,集群,负载均衡)

分布式部署:将业务拆分后的应用单独部署,应用直接通过RPC进行远程通信;

集群部署:电商网站的高可用要求,每个应用至少部署两台服务器进行集群部署;

负载均衡:是高可用系统必须的,一般应用通过负载均衡实现高可用,分布式服务通过内置的负载均衡实现高可用,关系型数据库通过主备方式实现高可用。

集群部署后架构图:

 

3.多级缓存

缓存按照存放的位置一般可分为两类本地缓存和分布式缓存。本案例采用二级缓存的方式,进行缓存的设计。一级缓存为本地缓存,二级缓存为分布式缓存。(还有页面缓存,片段缓存等,那是更细粒度的划分)

一级缓存,缓存数据字典,和常用热点数据等基本不可变/有规则变化的信息,二级缓存缓存需要的所有缓存。当一级缓存过期或不可用时,访问二级缓存的数据。如果二级缓存也没有,则访问数据库。

缓存的比例,一般1:4,即可考虑使用缓存。(理论上是1:2即可)。

 

根据业务特性可使用以下缓存过期策略:

  1. 缓存自动过期;
  2. 缓存触发过期;

4.单点登录(分布式Session)

系统分割为多个子系统,独立部署后,不可避免的会遇到会话管理的问题。一般可采用Session同步,Cookies,分布式Session方式。电商网站一般采用分布式Session实现。

再进一步可以根据分布式Session,建立完善的单点登录或账户管理系统。

 

流程说明

  1. 用户第一次登录时,将会话信息(用户Id和用户信息),比如以用户Id为Key,写入分布式Session;
  2. 用户再次登录时,获取分布式Session,是否有会话信息,如果没有则调到登录页;
  3. 一般采用Cache中间件实现,建议使用Redis,因此它有持久化功能,方便分布式Session宕机后,可以从持久化存储中加载会话信息;
  4. 存入会话时,可以设置会话保持的时间,比如15分钟,超过后自动超时;

结合Cache中间件,实现的分布式Session,可以很好的模拟Session会话。

5.数据库集群(读写分离,分库分表)

大型网站需要存储海量的数据,为达到海量数据存储,高可用,高性能一般采用冗余的方式进行系统设计。一般有两种方式读写分离和分库分表。

读写分离:一般解决读比例远大于写比例的场景,可采用一主一备,一主多备或多主多备方式。

本案例在业务拆分的基础上,结合分库分表和读写分离。如下图:

 

  1. 业务拆分后:每个子系统需要单独的库;
  2. 如果单独的库太大,可以根据业务特性,进行再次分库,比如商品分类库,产品库;
  3. 分库后,如果表中有数据量很大的,则进行分表,一般可以按照Id,时间等进行分表;(高级的用法是一致性Hash)
  4. 在分库,分表的基础上,进行读写分离;

相关中间件可参考Cobar(阿里,目前已不在维护),TDDL(阿里),Atlas(奇虎360),MyCat(在Cobar基础上,国内很多牛人,号称国内第一开源项目)。

分库分表后序列的问题,JOIN,事务的问题,会在分库分表主题分享中,介绍。

6.服务化

将多个子系统公用的功能/模块,进行抽取,作为公用服务使用。比如本案例的会员子系统就可以抽取为公用的服务。

 

7.消息队列

消息队列可以解决子系统/模块之间的耦合,实现异步,高可用,高性能的系统。是分布式系统的标准配置。本案例中,消息队列主要应用在购物,配送环节。

  1. 用户下单后,写入消息队列,后直接返回客户端;
  2. 库存子系统:读取消息队列信息,完成减库存;
  3. 配送子系统:读取消息队列信息,进行配送;

 

目前使用较多的MQ有Active MQ,Rabbit MQ,Zero MQ,MS MQ等,需要根据具体的业务场景进行选择。建议可以研究下Rabbit MQ。

六、架构总结

本文转载自:https://blog.csdn.net/he90227/article/details/50800520?tdsourcetag=s_pctim_aiomsg

吴伟祥

吴伟祥

粉丝 34
博文 500
码字总数 285677
作品 0
泉州
后端工程师
私信 提问
加载中

评论(0)

架构学习资料汇总

知名网站架构分析 探索Google App Engine背后的奥秘(1)–Google的核心技术 探索Google App Engine背后的奥秘(2)–Google的整体架构猜想 探索Google App Engine背后的奥秘(3)- Google App Eng...

peter8015
2016/04/22
349
0
web服务器,从单一到分布式的演变

最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的...

吾爱
2013/01/22
375
1
大型网站框架的演变

来自Ackarlix博客: http://www.ackarlix.com/2010/12/02/398 之前也有一些介绍大型网站架构演变的文章,例如LiveJournal的、ebay的,都是非常值得参考的,不过感觉他们讲的更多的是每次演变...

Ackarlix
2010/12/02
2.5K
18
一步步构建大型网站架构

之前我简单向大家介绍了各个知名大型网站的架构,MySpace的五个里程碑、Flickr的架构、YouTube的架构、PlentyOfFish的架构、WikiPedia的架构。这几个都很典型,我们可以从中获取很多有关网站...

huojiao2006
2017/03/06
0
0
大型网站架构演变和知识体系

之前也有一些介绍大型网站架构演变的文章,例如 LiveJournal 的、 ebay 的,都是非常值得参考的,不过感觉他们讲的更多的是每次演变的结果,而没有很详细的讲为什么需要做这样的演变,再加上...

johnnyhg
2009/05/08
380
0

没有更多内容

加载失败,请刷新页面

加载更多

Java基本程序设计结构

简述 Java起源于Sun公司为机顶盒开发的一款开发语言“Oak”,由于该名称被抢注更名为“Java”。Java是基于面向对象的开发语言,其特性在于“一次编译,到处运行”,这实现依赖于JVM。 Java程...

Yongy
27分钟前
49
0
【jquery仿dataList——性能优化】模板预编译思想提高性能10倍以上!!!

那撒,IE和google性能不减反增,求高手解释....... 前言 呵呵,当然,什么预编译什么性能提高5倍以上基本上市坑爹的,这里就是为了吸引阅读量,哈哈。 上当的大哥主动顶下哇??? 正题 之前...

shzwork
31分钟前
61
0
用博客系统开发作文网站探索MYSQL数据库性能和缓存技巧[图]

用博客系统开发作文网站探索MYSQL数据库性能和缓存技巧[图] 最近忙着建站,感觉现在建站是越来越难了,但还是用ZBLOG系统建了一个作文网站,叫做求索作文网,但是发现博客系统的缺点也还是有...

原创小博客
34分钟前
49
0
LinearLayout不在ScrollView内扩展

我在ScrollView中有一个LinearLayout ,它有android:layout_height="fill_parent" ,但它没有扩展到ScrollView的整个高度。 我的布局看起来像: level layout layout_width layout_......

技术盛宴
52分钟前
37
0
docker上启动nginx,并配置修改nginx的配置文件

1.使用docker 下载nginx 镜像 docker pull nginx 2.启动nginx docker run --name nginx -p 80:80 -d nginx 这样就简单的把nginx启动了,但是我们想要改变配置文件nginx.conf ,进入容器,命令...

yuxw
56分钟前
45
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部