文档章节

如何计算时间复杂度

浮躁的码农
 浮躁的码农
发布于 2015/08/17 18:03
字数 2387
阅读 124
收藏 12

一、概念

时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)

比如:一般总运算次数表达式类似于这样:

a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f

a ! =0时,时间复杂度就是O(2^n);

a=0,b<>0 =>O(n^3);

a,b=0,c<>0 =>O(n^2)依此类推

eg:

(1)   for(i=1;i<=n;i++)   //循环了n*n次,当然是O(n^2)

            for(j=1;j<=n;j++)

                 s++;

(2)   for(i=1;i<=n;i++)//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)

            for(j=i;j<=n;j++)

                 s++;

(3)   for(i=1;i<=n;i++)//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)

            for(j=1;j<=i;j++)

                 s++;

(4)   i=1;k=0;

      while(i<=n-1){

           k+=10*i;

      i++;      }

//循环了

n-1≈n次,所以是O(n)

(5)   for(i=1;i<=n;i++)

             for(j=1;j<=i;j++)

                 for(k=1;k<=j;k++)

                       x=x+1;

//

循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)

另外,在时间复杂度中,log(2,n)(2为底)lg(n)(10为底)是等价的,因为对数换底公式:

log(a,b)=log(c,b)/log(c,a)

所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的

二、计算方法

1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。

一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)

2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数fn),因此,算法的时间复杂度记做:Tn=Ofn))。随着模块n的增大,算法执行的时间的增长率和fn)的增长率成正比,所以fn)越小,算法的时间复杂度越低,算法的效率越高。

在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出Tn)的同数量级(它的同数量级有以下:1Log2n n nLog2n n的平方,n的三次方,2n次方,n!),找出后,fn=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度Tn=Ofn))。

3.常见的时间复杂度

按数量级递增排列,常见的时间复杂度有:

常数阶O(1),  对数阶O(log2n),  线性阶O(n),  线性对数阶O(nlog2n),  平方阶O(n^2), 立方阶O(n^3),... k次方阶O(n^k), 指数阶O(2^n)

其中,

1.O(n),O(n^2), 立方阶O(n^3),... k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。

2.O(2^n),指数阶时间复杂度,该种不实用

3.对数阶O(log2n),   线性对数阶O(nlog2n),除了常数阶以外,该种效率最高

例:算法:

  for(i=1;i<=n;++i

  {

     for(j=1;j<=n;++j)

     {

         c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2

          for(k=1;k<=n;++k)

               c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3

     }

  }

  则有 Tn= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3Tn)的同数量级

  则有fn= n^3,然后根据Tn/fn)求极限可得到常数c

  则该算法的 时间复杂度:Tn=On^3)

四、

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;                    

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)

O(n^2)

2.1.
交换ij的内容
     sum=0
                 (一次)
     for(i=1;i<=n;i++)       
n次 )
        for(j=1;j<=n;j++)
n^2次 )
         sum++
       n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.   
    for (i=1;i<n;i++)
    {
        y=y+1;         
   
        for (j=0;j<=(2*n);j++)    
           x++;        
      
    }         
解: 语句1的频度是n-1
          
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
          f(n)=2n^2-n-1+(n-1)=2n^2-2
          
该程序的时间复杂度T(n)=O(n^2).         

O(n)      
                                                      
2.3.
    a=0;
    b=1;                      

    for (i=1;i<=n;i++)

    {  
       s=a+b;
    ③
       b=a;
     ④  
       a=s;
     ⑤
    }
解:语句1的频度:2,        
           
语句2的频度: n,        
          
语句3的频度: n-1,        
          
语句4的频度:n-1,    
          
语句5的频度:n-1,                                  
          T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                 
O(log2n )

2.4.
     i=1;       

    while (i<=n)
       i=i*2;

解: 语句1的频度是1,  
          
设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n    
          
取最大值f(n)= log2n,
          T(n)=O(log2n )

O(n^3)

2.5.
    for(i=0;i<n;i++)
    {  
       for(j=0;j<i;j++)  
       {
          for(k=0;k<j;k++)
             x=x+2;  
       }
    }
解:当i=m, j=k的时候,内层循环的次数为ki=m, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
                                  

我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
下面是一些常用的记法:


访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2
指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。

 

本文转载自:

共有 人打赏支持
浮躁的码农

浮躁的码农

粉丝 65
博文 754
码字总数 146196
作品 0
松江
程序员
私信 提问
算法的时间复杂度计算

计算算法的时间复杂度,通常说的是算法的渐进增长时间复杂度,也就是随着数据的变大,该算法所需要的时间是如何增长的。 推导时间复杂度的原则 用常数1取代运行事件中的所有加法常数。 在修改...

光哥很霸气
2017/01/09
0
0
时间复杂度跟空间复杂度

时间复杂度:执行一个算法所需要的时间的衡量标准。 空间复杂度:执行一个算法所需要的空间的衡量标准。 拿时间换空间和拿空间换时间是优化算法的途径。 求时间复杂度: 如果算法的执行时间不...

李雷岗
2016/11/30
8
0
排序算法的空间复杂度和时间复杂度问题

不知道如何计算冒泡和选择等排序算法的时间复杂度和空间复杂度?求解

努力干到cto
2017/10/19
109
2
如何编写更好的SQL查询:终极指南-第三部分

本次我们学习《如何编写更好的SQL查询》系列的最后一篇文章。 时间复杂度和大O符号 通过前两篇文章,我们已经对查询计划有了一定了解。接下来,我们还可以借助计算复杂度理论,来进一步深入地...

powertoolsteam
2017/09/11
0
0
如何编写更好的SQL查询:终极指南-第三部分

本次我们学习《如何编写更好的SQL查询》系列的最后一篇文章。 时间复杂度和大O符号 通过前两篇文章,我们已经对查询计划有了一定了解。接下来,我们还可以借助计算复杂度理论,来进一步深入地...

powertoolsteam
2017/09/11
0
0

没有更多内容

加载失败,请刷新页面

加载更多

jquery通过id显示隐藏

var $div3 = $('#div3'); 显示 $div3.show(); 隐藏 $div3.hide();

yan_liu
今天
3
0
《乱世佳人》读书笔记及相关感悟3900字

《乱世佳人》读书笔记及相关感悟3900字: 之前一直听「荔枝」,后来不知怎的转向了「喜马拉雅」,一听就是三年。上班的时候听房产,买房了以后听装修,兴之所至时听旅行,分手后听亲密关系,...

原创小博客
今天
3
0
大数据教程(9.6)map端join实现

上一篇文章讲了mapreduce配合实现join,本节博主将讲述在map端的join实现; 一、需求 实现两个“表”的join操作,其中一个表数据量小,一个表很大,这种场景在实际中非常常见,比如“订单日志...

em_aaron
今天
3
0
cookie与session详解

session与cookie是什么? session与cookie属于一种会话控制技术.常用在身份识别,登录验证,数据传输等.举个例子,就像我们去超市买东西结账的时候,我们要拿出我们的会员卡才会获取优惠.这时...

士兵7
今天
3
0
十万个为什么之为什么大家都说dubbo

Dubbo是什么? 使用背景 dubbo为什么这么流行, 为什么大家都这么喜欢用dubbo; 通过了解分布式开发了解到, 为适应访问量暴增,业务拆分后, 子应用部署在多台服务器上,而多台服务器通过可以通过d...

尾生
今天
5
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部