鸿蒙内核源码分析(中断切换篇) | 中断切换到底在切换什么? | 百篇博客分析HarmonyOS源码 | v42.02

原创
03/18 19:48
阅读数 3.4K

百万汉字注解 >> 精读内核源码,中文注解分析, 深挖地基工程,大脑永久记忆,四大码仓每日同步更新< gitee | github | csdn | coding >

百篇博客分析 >> 故事说内核,问答式导读,生活式比喻,表格化说明,图形化展示,主流站点定期更新中< oschina | csdn | 掘金 | weharmony >


关于中断部分系列篇将用三篇详细说明整个过程.

  • 中断概念篇 中断概念很多,比如中断控制器,中断源,中断向量,中断共享,中断处理程序等等.本篇做一次整理.先了解透概念才好理解中断过程.用海公公打比方说明白中断各个概念.可前往鸿蒙内核源码分析(总目录)查看.

  • 中断管理篇 从中断初始化HalIrqInit开始,到注册中断的LOS_HwiCreate函数,到消费中断函数的 HalIrqHandler,剖析鸿蒙内核实现中断的过程,很像设计模式中的观察者模式. 可前往鸿蒙内核源码分析(总目录)查看.

  • 中断切换篇(本篇) 用自下而上的方式,从中断源头纯汇编代码往上跟踪代码细节.说清楚保存和恢复中断现场TaskIrqContext过程.

中断环境下的任务切换

在鸿蒙的内核线程就是任务,系列篇中说的任务和线程当一个东西去理解.

一般二种场景下需要切换任务上下文:

  • 在中断环境下,从当前线程切换到目标线程,这种方式也称为硬切换.它们通常由硬件产生或是软件发生异常时的被动式切换.哪些情况下会出现硬切换呢?

    • 中断源可分外部和内部中断源两大类,比如 鼠标,键盘外部设备每次点击和敲打,屏幕的触摸,USB的插拔等等这些都是外部中断源.存储器越限、缺页,核间中断,断点中断等等属于内部中断源.由此产生的硬切换都需要换栈运行,硬切换硬在需切换工作模式(中断模式).所以会比线程环境下的切换更复杂点,但道理还是一样要保存和恢复切换现场寄存器的值, 而保存寄存器顺序格式结构体叫:任务中断上下文(TaskIrqContext).
  • 在线程环境下,从当前线程切换到目标线程,这种方式也称为软切换,能由软件控制的自主式切换.哪些情况下会出现软切换呢?

    • 运行的线程申请某种资源(比如各种锁,读/写消息队列)失败时,需要主动释放CPU的控制权,将自己挂入等待队列,调度算法重新调度新任务运行.
    • 每隔10ms就执行一次的OsTickHandler节拍处理函数,检测到任务的时间片用完了,就发起任务的重新调度,切换到新任务运行.
    • 不管是内核态的任务还是用户态的任务,于切换而言是统一处理,一视同仁的,因为切换是需要换栈运行,寄存器有限,需要频繁的复用,这就需要将当前寄存器值先保存到任务自己的栈中,以便别人用完了轮到自己再用时恢复寄存器当时的值,确保老任务还能继续跑下去. 而保存寄存器顺序格式结构体叫:任务上下文(TaskContext).

本篇说清楚在中断环境下切换(硬切换)的实现过程.线程切换(软切换)实现过程已在鸿蒙内核源码分析(总目录)任务切换篇中详细说明.

ARM的七种工作模式中,有两个是和中断相关.

  • 普通中断模式(irq):一般中断模式也叫普通中断模式,用于处理一般的中断请求,通常在硬件产生中断信号之后自动进入该模式,该模式可以自由访问系统硬件资源。
  • 快速中断模式(fiq):快速中断模式是相对一般中断模式而言的,用来处理高优先级中断的模式,处理对时间要求比较紧急的中断请求,主要用于高速数据传输及通道处理中。

此处分析普通中断模式下的任务切换过程.

普通中断模式相关寄存器

这张图一定要刻在脑海里,系列篇会多次拿出来,目的是为了能牢记它. 在这里插入图片描述

  • 普通中断模式(图中IRQ列)是一种异常模式,有自己独立运行的栈空间.一个(IRQ)中断发生后,硬件会将CPSR寄存器工作模式置为IRQ模式.并跳转到入口地址OsIrqHandler执行.
#define OS_EXC_IRQ_STACK_SIZE    64 //中断模式栈大小 64个字节
__irq_stack:
    .space OS_EXC_IRQ_STACK_SIZE * CORE_NUM
__irq_stack_top:
  • OsIrqHandler汇编代码实现过程,就干了三件事:
    • 1.保存任务中断上下文TaskIrqContext
    • 2.执行中断处理程序HalIrqHandler,这是个C函数,由汇编调用
    • 3.恢复任务中断上下文TaskIrqContext,返回被中断的任务继续执行

TaskIrqContext 和 TaskContext

先看本篇结构体 TaskIrqContext

#define TASK_IRQ_CONTEXT \
        unsigned int R0;     \
        unsigned int R1;     \
        unsigned int R2;     \
        unsigned int R3;     \
        unsigned int R12;    \
        unsigned int USP;    \
        unsigned int ULR;    \
        unsigned int CPSR;   \
        unsigned int PC;

typedef struct {//任务中断上下文
#if !defined(LOSCFG_ARCH_FPU_DISABLE)
    UINT64 D[FP_REGS_NUM]; /* D0-D31 */
    UINT32 regFPSCR;       /* FPSCR */
    UINT32 regFPEXC;       /* FPEXC */
#endif
    UINT32 resved;
    TASK_IRQ_CONTEXT
} TaskIrqContext;
typedef struct {//任务上下文,已在任务切换篇中详细说明,放在此处是为了对比  
#if !defined(LOSCFG_ARCH_FPU_DISABLE)
    UINT64 D[FP_REGS_NUM]; /* D0-D31 */
    UINT32 regFPSCR;       /* FPSCR */
    UINT32 regFPEXC;       /* FPEXC */
#endif
    UINT32 resved;          /* It's stack 8 aligned */
    UINT32 regPSR;          //保存CPSR寄存器
    UINT32 R[GEN_REGS_NUM]; /* R0-R12 */
    UINT32 SP;              /* R13 */
    UINT32 LR;              /* R14 */
    UINT32 PC;              /* R15 */
} TaskContext;
  • 两个结构体很简单,目的更简单,就是用来保存寄存器现场的值的. TaskContext把17个寄存器全部保存了,TaskIrqContext保存的少些,在栈中并没有保存R4-R11寄存器的值,这说明在整个中断处理过程中,都不会用到R4-R11寄存器.不会用到就不会改变,当然就没必要保存了.这也说明内核开发者的严谨程度,不造成时间和空间上的一丁点浪费.效率的提升是从细节处入手的,每个小地方优化那么一丢丢,整体性能就上来了.
  • TaskIrqContext中有两个变量有点奇怪 unsigned int USP; unsigned int ULR; 指的是用户模式下的SP和LR值, 这个要怎么理解? 因为对一个正运行的任务而言,中断的到来是颗不定时炸弹,无法预知,也无法提前准备,中断一来它立即被打断,压根没有时间去保存现场到自己的栈中,那保存工作只能是放在IRQ栈或者SVC栈中.而IRQ栈非常的小,只有64个字节,16个栈空间,指望不上了,就保存在SVC栈中,SVC模式栈可是有 8K空间的.
  • 从接下来的 OsIrqHandler代码中可以看出,鸿蒙内核整个中断的工作其实都是在SVC模式下完成的,而irq的栈只是个过渡栈.具体看汇编代码逐行注解分析.

普通中断处理程序

OsIrqHandler:	@硬中断处理,此时已切换到硬中断栈
    SUB     LR, LR, #4	@记录译码指令地址,以防切换过程丢失指令

    /* push r0-r3 to irq stack */ @irq栈只是个过渡栈
    STMFD   SP, {R0-R3}		@r0-r3寄存器入 irq 栈
    SUB     R0, SP, #(4 * 4)@r0 = sp - 16,目的是记录{R0-R3}4个寄存器保存的开始位置,届时从R3开始出栈
    MRS     R1, SPSR		@获取程序状态控制寄存器
    MOV     R2, LR			@r2=lr

    /* disable irq, switch to svc mode */@超级用户模式(SVC 模式),主要用于 SWI(软件中断)和 OS(操作系统)。
    CPSID   i, #0x13				@切换到SVC模式,此处一切换,后续指令将在SVC栈运行
									@CPSID i为关中断指令,对应的是CPSIE
    @TaskIrqContext 开始保存中断现场 ......							
    /* push spsr and pc in svc stack */
    STMFD   SP!, {R1, R2} @实际是将 SPSR,和PC入栈对应TaskIrqContext.PC,TaskIrqContext.CPSR,
    STMFD   SP, {LR}	  @LR再入栈,SP不自增,如果是用户模式,LR值将被 282行:STMFD   SP, {R13, R14}^覆盖  
						  @如果非用户模式,将被 286行:SUB     SP, SP, #(2 * 4) 跳过.
    AND     R3, R1, #CPSR_MASK_MODE	@获取CPU的运行模式
    CMP     R3, #CPSR_USER_MODE		@中断是否发生在用户模式
    BNE     OsIrqFromKernel			@非用户模式不用将USP,ULR保存在TaskIrqContext

    /* push user sp, lr in svc stack */
    STMFD   SP, {R13, R14}^ 		@将用户模式的sp和LR入svc栈

OsIrqFromKernel:	@从内核发起中断
    /* from svc not need save sp and lr */@svc模式下发生的中断不需要保存sp和lr寄存器值
    SUB     SP, SP, #(2 * 4)	@目的是为了留白给 TaskIrqContext.USP,TaskIrqContext.ULR
								@TaskIrqContext.ULR已经在 276行保存了,276行用的是SP而不是SP!,所以此处要跳2个空间
    /* pop r0-r3 from irq stack*/
    LDMFD   R0, {R0-R3}		    @从R0位置依次出栈 

    /* push caller saved regs as trashed regs in svc stack */
    STMFD   SP!, {R0-R3, R12}	@寄存器入栈,对应 TaskIrqContext.R0~R3,R12

    /* 8 bytes stack align */
    SUB     SP, SP, #4			@栈对齐 对应TaskIrqContext.resved

    /*
     * save fpu regs in case in case those been
     * altered in interrupt handlers.
     */
    PUSH_FPU_REGS   R0 @保存fpu regs,以防中断处理程序中的fpu regs被修改。
    @TaskIrqContext 结束保存中断现场......	
    @开始执行真正的中断处理函数了.
#ifdef LOSCFG_IRQ_USE_STANDALONE_STACK @是否使用了独立的IRQ栈
    PUSH    {R4}	@R4先入栈保存,接下来要切换栈,需保存现场
    MOV     R4, SP	@R4=SP
    EXC_SP_SET __svc_stack_top, OS_EXC_SVC_STACK_SIZE, R1, R2 @切换到svc栈
#endif
	/*BLX 带链接和状态切换的跳转*/
    BLX     HalIrqHandler /* 调用硬中断处理程序,无参 ,说明HalIrqHandler在svc栈中执行 */

#ifdef LOSCFG_IRQ_USE_STANDALONE_STACK @是否使用了独立的IRQ栈
    MOV     SP, R4	@恢复现场,sp = R4 
    POP     {R4}	@弹出R4
#endif

    /* process pending signals */ 	@处理挂起信号
    BL      OsTaskProcSignal 		@跳转至C代码 

    /* check if needs to schedule */@检查是否需要调度
    CMP     R0, #0	@是否需要调度,R0为参数保存值
    BLNE    OsSchedPreempt @不相等,即R0非0,一般是 1

    MOV     R0,SP	@参数
    MOV     R1,R7	@参数
    BL      OsSaveSignalContextIrq @跳转至C代码 

    /* restore fpu regs */
    POP_FPU_REGS    R0 @恢复fpu寄存器值

    ADD     SP, SP, #4 @sp = sp + 4 

OsIrqContextRestore:	@恢复硬中断环境
    LDR     R0, [SP, #(4 * 7)]	@R0 = sp + 7,目的是跳到恢复中断现场TaskIrqContext.CPSR位置,刚好是TaskIrqContext倒数第7的位置.
    MSR     SPSR_cxsf, R0		@恢复spsr 即:spsr = TaskIrqContext.CPSR
    AND     R0, R0, #CPSR_MASK_MODE @掩码找出当前工作模式
    CMP     R0, #CPSR_USER_MODE	@是否为用户模式?
    @TaskIrqContext 开始恢复中断现场 ......	
    LDMFD   SP!, {R0-R3, R12}	@从SP位置依次出栈 对应 TaskIrqContext.R0~R3,R12
								@此时已经恢复了5个寄存器,接来下是TaskIrqContext.USP,TaskIrqContext.ULR
    BNE     OsIrqContextRestoreToKernel @看非用户模式,怎么恢复中断现场.

    /* load user sp and lr, and jump cpsr */
    LDMFD   SP, {R13, R14}^ @出栈,恢复用户模式sp和lr值 即:TaskIrqContext.USP,TaskIrqContext.ULR
    ADD     SP, SP, #(3 * 4) @跳3个位置,跳过 CPSR ,因为上一句不是 SP!,所以跳3个位置,刚好到了保存TaskIrqContext.PC的位置

    /* return to user mode */
    LDMFD   SP!, {PC}^ @回到用户模式,整个中断过程完成
    @TaskIrqContext 结束恢复中断现场(用户模式下) ......	

OsIrqContextRestoreToKernel:@从内核恢复中断
    /* svc mode not load sp */
    ADD     SP, SP, #4 @其实是跳过TaskIrqContext.USP,因为在内核模式下并没有保存这个值,翻看 287行
    LDMFD   SP!, {LR} @弹出LR
    /* jump cpsr and return to svc mode */
    ADD     SP, SP, #4 @跳过cpsr
    LDMFD   SP!, {PC}^ @回到svc模式,整个中断过程完成
    @TaskIrqContext 结束恢复中断现场(内核模式下) ......

逐句解读

  • 跳转到 OsIrqFromKernel硬件会自动切换到__irq_stack执行
  • 1句:SUB LR, LR, #4 在arm执行过程中一般分为取指,译码,执行阶段,而PC是指向取指,正在执行的指令为 PC-8 ,译码指令为PC-4.当中断发生时硬件自动执行 mov lr pc, 中间的PC-4译码指令因为没有寄存器去记录它,就会被丢失掉.所以SUB LR, LR, #4 的结果是lr = PC -4 ,定位到了被中断时译码指令,将在栈中保存这个位置,确保回来后能继续执行.
  • 2句:STMFD SP, {R0-R3} 当前4个寄存器入__irq_stack保存
  • 3句:SUB R0, SP, #(4 * 4) 因为SP没有自增,R0跳到保存R0内容地址
  • 4,5句:读取SPSR,LR寄存器内容,目的是为了后面在SVC栈中保存TaskIrqContext
  • 6句:CPSID i, #0x13禁止中断和切换SVC模式,执行完这条指令后工作模式将切到 SVC模式
  • @TaskIrqContext 开始保存中断现场 ......
  • 中间代码需配合TaskIrqContext来看,不然100%懵逼.结合看就秒懂,代码都已经注释,不再做解释,注解中提到的 翻看276行 是指源码的第276行,请对照注解源码看理解会更透彻. 进入源码注解地址查看
  • @TaskIrqContext 结束保存中断现场 ......
  • TaskIrqContext保存完现场后就真正的开始处理中断了.
	/*BLX 带链接和状态切换的跳转*/
    BLX     HalIrqHandler /* 调用硬中断处理程序,无参 ,说明HalIrqHandler在svc栈中执行 */
#ifdef LOSCFG_IRQ_USE_STANDALONE_STACK @是否使用了独立的IRQ栈
    MOV     SP, R4	@恢复现场,sp = R4 
    POP     {R4}	@弹出R4
#endif
    /* process pending signals */ 	@处理挂起信号
    BL      OsTaskProcSignal 		@跳转至C代码 
    /* check if needs to schedule */@检查是否需要调度
    CMP     R0, #0	@是否需要调度,R0为参数保存值
    BLNE    OsSchedPreempt @不相等,即R0非0,一般是 1
    MOV     R0,SP	@参数
    MOV     R1,R7	@参数
    BL      OsSaveSignalContextIrq @跳转至C代码 
    /* restore fpu regs */
    POP_FPU_REGS    R0 @恢复fpu寄存器值
    ADD     SP, SP, #4 @sp = sp + 4 
  • 这段代码都是跳转到C语言去执行,分别是 HalIrqHandler OsTaskProcSignal OsSchedPreempt OsSaveSignalContextIrq C语言部分内容很多,将在中断管理篇中说明.

  • @TaskIrqContext 开始恢复中断现场 ......

  • 同样的中间代码需配合TaskIrqContext来看,不然100%懵逼.结合看就秒懂,代码都已经注释,不再做解释,注解中提到的 翻看287行 是指源码的第287行,请对照注解源码看理解会更透彻.进入源码注解地址查看

  • @TaskIrqContext 结束恢复中断现场 ......

鸿蒙源码百篇博客 往期回顾

参与贡献

喜欢请大方 点赞+关注+收藏 吧

  • 公众号: 鸿蒙内核源码分析

  • 各大站点搜 "鸿蒙内核源码分析" .欢迎转载,请注明出处.

展开阅读全文
打赏
1
1 收藏
分享
加载中
更多评论
打赏
0 评论
1 收藏
1
分享
返回顶部
顶部