文档章节

分类算法之朴素贝叶斯分类(Naive Bayesian classification)

天蚕宝衣
 天蚕宝衣
发布于 2017/06/13 08:02
字数 3121
阅读 13
收藏 0
点赞 0
评论 0

1.1. 摘要

      贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍贝叶斯分类算法的基础——贝叶斯定理。最后,通过实例讨论贝叶斯分类中最简单的一种:朴素贝叶斯分类。

1.2. 分类问题综述

      对于分类问题,其实谁都不会陌生,说我们每个人每天都在执行分类操作一点都不夸张,只是我们没有意识到罢了。例如,当你看到一个陌生人,你的脑子下意识判断TA是男是女;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱、那边有个非主流”之类的话,其实这就是一种分类操作。

      从数学角度来说,分类问题可做如下定义:

      已知集合:,确定映射规则,使得任意有且仅有一个使得成立。(不考虑模糊数学里的模糊集情况)

      其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合,其中每一个元素是一个待分类项,f叫做分类器。分类算法的任务就是构造分类器f。

      这里要着重强调,分类问题往往采用经验性方法构造映射规则,即一般情况下的分类问题缺少足够的信息来构造100%正确的映射规则,而是通过对经验数据的学习从而实现一定概率意义上正确的分类,因此所训练出的分类器并不是一定能将每个待分类项准确映射到其分类,分类器的质量与分类器构造方法、待分类数据的特性以及训练样本数量等诸多因素有关。

      例如,医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验、检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系。

1.3. 贝叶斯分类的基础——贝叶斯定理

      每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:

      表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:

      贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A),贝叶斯定理就为我们打通通过P(A|B)获取P(B|A)的道路。

      下面不加证明地直接给出贝叶斯定理:

      

1.4. 朴素贝叶斯分类

1.4.1. 朴素贝叶斯分类的原理与流程

      朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。

      朴素贝叶斯分类的正式定义如下:

      1、设为一个待分类项,而每个a为x的一个特征属性

      2、有类别集合

      3、计算

      4、如果,则

      那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:

      1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集

      2、统计得到在各类别下各个特征属性的条件概率估计。

      3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:

      

      因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:

      

      根据上述分析,朴素贝叶斯分类的流程可以由下图表示(暂时不考虑验证):

      可以看到,整个朴素贝叶斯分类分为三个阶段:

      第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性特征属性划分训练样本质量决定。

      第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个类别在训练样本中的出现频率及每个特征属性划分对每个类别的条件概率估计,并将结果记录。其输入是特征属性和训练样本,输出是分类器。这一阶段是机械性阶段,根据前面讨论的公式可以由程序自动计算完成。

      第三阶段——应用阶段。这个阶段的任务是使用分类器对待分类项进行分类,其输入是分类器和待分类项,输出是待分类项与类别的映射关系。这一阶段也是机械性阶段,由程序完成。

1.4.2. 估计类别下特征属性划分的条件概率及Laplace校准

      这一节讨论P(a|y)的估计。

      由上文看出,计算各个划分的条件概率P(a|y)是朴素贝叶斯分类的关键性步骤,当特征属性为离散值时,只要很方便的统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y),下面重点讨论特征属性是连续值的情况。

      当特征属性为连续值时,通常假定其值服从高斯分布(也称正态分布)。即:

      

      而

      因此只要计算出训练样本中各个类别中此特征项划分的各均值和标准差,代入上述公式即可得到需要的估计值。均值与标准差的计算在此不再赘述。

      另一个需要讨论的问题就是当P(a|y)=0怎么办,当某个类别下某个特征项划分没有出现时,就是产生这种现象,这会令分类器质量大大降低。为了解决这个问题,我们引入Laplace校准,它的思想非常简单,就是对没类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响,并且解决了上述频率为0的尴尬局面。

1.4.3. 朴素贝叶斯分类实例:检测SNS社区中不真实账号

      下面讨论一个使用朴素贝叶斯分类解决实际问题的例子,为了简单起见,对例子中的数据做了适当的简化。

      这个问题是这样的,对于SNS社区来说,不真实账号(使用虚假身份或用户的小号)是一个普遍存在的问题,作为SNS社区的运营商,希望可以检测出这些不真实账号,从而在一些运营分析报告中避免这些账号的干扰,亦可以加强对SNS社区的了解与监管。

      如果通过纯人工检测,需要耗费大量的人力,效率也十分低下,如能引入自动检测机制,必将大大提升工作效率。这个问题说白了,就是要将社区中所有账号在真实账号和不真实账号两个类别上进行分类,下面我们一步一步实现这个过程。

      首先设C=0表示真实账号,C=1表示不真实账号。

      1、确定特征属性及划分

      这一步要找出可以帮助我们区分真实账号与不真实账号的特征属性,在实际应用中,特征属性的数量是很多的,划分也会比较细致,但这里为了简单起见,我们用少量的特征属性以及较粗的划分,并对数据做了修改。

      我们选择三个特征属性:a1:日志数量/注册天数,a2:好友数量/注册天数,a3:是否使用真实头像。在SNS社区中这三项都是可以直接从数据库里得到或计算出来的。

      下面给出划分:a1:{a<=0.05, 0.05<a<0.2, a>=0.2},a1:{a<=0.1, 0.1<a<0.8, a>=0.8},a3:{a=0(不是),a=1(是)}。

      2、获取训练样本

      这里使用运维人员曾经人工检测过的1万个账号作为训练样本。

      3、计算训练样本中每个类别的频率

      用训练样本中真实账号和不真实账号数量分别除以一万,得到:

      

      

      4、计算每个类别条件下各个特征属性划分的频率

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      5、使用分类器进行鉴别

      下面我们使用上面训练得到的分类器鉴别一个账号,这个账号使用非真实头像,日志数量与注册天数的比率为0.1,好友数与注册天数的比率为0.2。

      

      

      可以看到,虽然这个用户没有使用真实头像,但是通过分类器的鉴别,更倾向于将此账号归入真实账号类别。这个例子也展示了当特征属性充分多时,朴素贝叶斯分类对个别属性的抗干扰性。

1.5. 分类器的评价

      虽然后续还会提到其它分类算法,不过这里我想先提一下如何评价分类器的质量。

      首先要定义,分类器的正确率指分类器正确分类的项目占所有被分类项目的比率。

      通常使用回归测试来评估分类器的准确率,最简单的方法是用构造完成的分类器对训练数据进行分类,然后根据结果给出正确率评估。但这不是一个好方法,因为使用训练数据作为检测数据有可能因为过分拟合而导致结果过于乐观,所以一种更好的方法是在构造初期将训练数据一分为二,用一部分构造分类器,然后用另一部分检测分类器的准确率。

本文转载自:http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html

共有 人打赏支持
天蚕宝衣
粉丝 18
博文 236
码字总数 178069
作品 0
天津
统计学习方法 | 朴素贝叶斯法

01 分类方法 之前我们学习了一种分类方法——K近邻法(KNN),今天我们再学习一种更常用的分类方法 朴素贝叶斯法 这里,我们先区分一下“分类”和“聚类” 分类的目的是学会一个分类函数或分类...

邓莎 ⋅ 05/23 ⋅ 0

MADlib——基于SQL的数据挖掘解决方案(22)——分类之朴素贝叶斯

一、贝叶斯分类简介 1. 贝叶斯分类原理 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。贝叶斯分类是一种利用概率统计知识进行分类的算法,其分类原理...

wzy0623 ⋅ 03/06 ⋅ 0

数据挖掘十大算法以及scikit-learn算法选择图

1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息...

kwame211 ⋅ 05/16 ⋅ 0

ML梳理01 | 贝叶斯分类算法的前世今生

开篇.jpg 关键字:贝叶斯、概率、贝叶斯分类算法、应用 本文收集整理的相关知识点大多来自网络,如有不恰当之处,还望指正。 什么是概率? 什么是概率这个问题似乎人人都觉得自己知道,却有很...

RookieDay ⋅ 01/31 ⋅ 0

统计学习方法总结

统计 本文总结了常用的统计学习方法,包括模型定义,原理,适用场景,模型参数学习方法等。统计学习是根据一部分标记好的实例数据,推断待分类实例的类别,所以并不知道数据的真实分布函数。...

JackMeGo ⋅ 03/02 ⋅ 0

机器学习:基本概念、五大流派与九种常见算法

简介 机器学习正在进步,我们似乎正在不断接近我们心中的人工智能目标。语音识别、图像检测、机器翻译、风格迁移等技术已经在我们的实际生活中开始得到了应用,但机器学习的发展仍还在继续,...

bedrock_stable ⋅ 03/29 ⋅ 0

机器学习之分类器——Matlab中各种分类器的使用总结(随机森林、支持向量机、K近邻分类器、朴素贝叶斯等)

Matlab中常用的分类器有随机森林分类器、支持向量机(SVM)、K近邻分类器、朴素贝叶斯、集成学习方法和鉴别分析分类器等。各分类器的相关Matlab函数使用方法如下: 首先对以下介绍中所用到的...

jisuanjiguoba ⋅ 04/19 ⋅ 0

实例 | 利用犯罪记录聚类和分类暴力行为(附步骤解析)

介绍 很高兴知道Data Science的应用超越了商业场景和企业盈利的目的。最近我有幸承担了全国安全社区网络的一项非盈利项目,使我能够亲身体验应用机器学习的方法来服务我们的社区。纽约州约翰...

技术小能手 ⋅ 06/07 ⋅ 0

数据挖掘读书笔记--第八章(中):分类:贝叶斯分类法 、基于规则分类

散记知识点 ——“继续学习经典分类算法” 3. 贝叶斯分类法(Naive Bayesian) 贝叶斯分类法是统计学分类方法,基于贝叶斯定理。朴素贝叶斯分类法可以与决策树和经过挑选的神经网络分类器相媲美...

weixin_40170902 ⋅ 04/17 ⋅ 0

浅谈机器学习分类算法

目前随着人工智能的发展,机器学习的应用领域日益宽泛,各种机器学习适应不同的应用场景,而机器学习差别的关键点之一就在于所使用算法的不同,今天就为大家介绍 4 种主要的分类算法。 朴素贝...

又拍云 ⋅ 2017/12/19 ⋅ 0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

Sqoop

1.Sqoop: 《=》 SQL to Hadoop 背景 1)场景:数据在RDBMS中,我们如何使用Hive或者Hadoop来进行数据分析呢? 1) RDBMS ==> Hadoop(广义) 2) Hadoop ==> RDBMS 2)原来可以通过MapReduce I...

GordonNemo ⋅ 46分钟前 ⋅ 0

全量构建和增量构建的区别

1.全量构建每次更新时都需要更新整个数据集,增量构建只对需要更新的时间范围进行更新,所以计算量会较小。 2.全量构建查询时不需要合并不同Segment,增量构建查询时需要合并不同Segment的结...

无精疯 ⋅ 57分钟前 ⋅ 0

如何将S/4HANA系统存储的图片文件用Java程序保存到本地

我在S/4HANA的事务码MM02里为Material维护图片文件作为附件: 通过如下简单的ABAP代码即可将图片文件的二进制内容读取出来: REPORT zgos_api.DATA ls_appl_object TYPE gos_s_obj.DA...

JerryWang_SAP ⋅ 今天 ⋅ 0

云计算的选择悖论如何对待?

导读 人们都希望在工作和生活中有所选择。但心理学家的调查研究表明,在多种选项中进行选择并不一定会使人们更快乐,甚至不会产生更好的决策。心理学家Barry Schwartz称之为“选择悖论”。云...

问题终结者 ⋅ 今天 ⋅ 0

637. Average of Levels in Binary Tree - LeetCode

Question 637. Average of Levels in Binary Tree Solution 思路:定义一个map,层数作为key,value保存每层的元素个数和所有元素的和,遍历这个树,把map里面填值,遍历结束后,再遍历这个map,把每...

yysue ⋅ 今天 ⋅ 0

IDEA配置和使用

版本控制 svn IDEA版本控制工具不能使用 VCS-->Enable Version Control Integration File-->Settings-->Plugins 搜索Subversion,勾选SVN和Git插件 删除.idea文件夹重新生成项目 安装SVN客户......

bithup ⋅ 今天 ⋅ 0

PE格式第三讲扩展,VA,RVA,FA的概念

作者:IBinary 出处:http://www.cnblogs.com/iBinary/ 版权所有,欢迎保留原文链接进行转载:) 一丶VA概念 VA (virtual Address) 虚拟地址的意思 ,比如随便打开一个PE,找下它的虚拟地址 这边...

simpower ⋅ 今天 ⋅ 0

180623-SpringBoot之logback配置文件

SpringBoot配置logback 项目的日志配置属于比较常见的case了,之前接触和使用的都是Spring结合xml的方式,引入几个依赖,然后写个 logback.xml 配置文件即可,那么在SpringBoot中可以怎么做?...

小灰灰Blog ⋅ 今天 ⋅ 0

冒泡排序

原理:比较两个相邻的元素,将值大的元素交换至右端。 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面。即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后。然后比较第...

人觉非常君 ⋅ 今天 ⋅ 0

Vagrant setup

安装软件 brew cask install virtualboxbrew cask install vagrant 创建project mkdir -p mst/vmcd mst/vmvagrant init hashicorp/precise64vagrant up hashicorp/precise64是一个box......

遥借东风 ⋅ 今天 ⋅ 0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部