文档章节

利用Zipkin对Spring Cloud应用进行服务追踪分析

voole
 voole
发布于 2017/02/25 09:07
字数 1396
阅读 1279
收藏 4

设想这么一种情况,如果你的微服务数量逐渐增大,服务间的依赖关系越来越复杂,怎么分析它们之间的调用关系及相互的影响?

服务追踪分析

一个由微服务构成的应用系统通过服务来划分问题域,通过REST请求服务API来连接服务来完成完整业务。对于入口的一个调用可能需要有多个后台服务协同完成,链路上任何一个调用超时或出错都可能造成前端请求的失败。服务的调用链也会越来越长,并形成一个树形的调用链。

trace_tree

随着服务的增多,对调用链的分析也会越来越负责。设想你在负责下面这个系统,其中每个小点都是一个微服务,他们之间的调用关系形成了复杂的网络。

internal_services

有密集恐惧症的同学就忽略吧。

针对服务化应用全链路追踪的问题,Google发表了Dapper论文,介绍了他们如何进行服务追踪分析。其基本思路是在服务调用的请求和响应中加入ID,标明上下游请求的关系。利用这些信息,可以可视化地分析服务调用链路和服务间的依赖关系。

Spring Cloud Sleuth和Zipkin

对应Dpper的开源实现是Zipkin,支持多种语言包括JavaScript,Python,Java, Scala, Ruby, C#, Go等。其中Java由多种不同的库来支持。

在这个示例中,我们准备开发两个基于Spring Cloud的应用,利用Spring Cloud Sleuth来和Zipkin进行集成。Spring Cloud Sleuth是对Zipkin的一个封装,对于Span、Trace等信息的生成、接入HTTP Request,以及向Zipkin Server发送采集信息等全部自动完成。

这是Spring Cloud Sleuth的概念图。

springcloud_sleuth_trace_id

服务REST调用

本次演示的服务有两个:tracedemo做为前端服务接收用户的请求,tracebackend为后端服务,tracedemo通过http协议调用后端服务。

利用RestTemplate进行HTTP请求调用

tracedemo应用通过restTemplate调用后端tracedemo服务,注意,URL中指明tracedemo的地址为backend

@RequestMapping("/")
public String callHome(){
    LOG.log(Level.INFO, "calling trace demo backend");
    return restTemplate.getForObject("http://backend:8090", String.class);
}

后端服务响应HTTP请求,输出一行日志后返回经典的“hello world”。

@RequestMapping("/")
public String home(){
    LOG.log(Level.INFO, "trace demo backend is being called");
    return "Hello World.";
}

引入Sleuth和Zipkin依赖包

可以看到,这是典型的两个spring应用通过RestTemplate进行访问的方式,哪在HTTP请求中注入追踪信息并把相关信息发送到Zipkin Server呢?答案在两个应用所加载的JAR包里。

本示例采用gradle来构建应用,在build.gradle中加载了sleuth和zipkin相关的JAR包:

dependencies {
    compile('org.springframework.cloud:spring-cloud-starter-sleuth')
    compile('org.springframework.cloud:spring-cloud-sleuth-zipkin')
    testCompile('org.springframework.boot:spring-boot-starter-test')
}

Spring应用在监测到Java依赖包中有sleuth和zipkin后,会自动在RestTemplate的调用过程中向HTTP请求注入追踪信息,并向Zipkin Server发送这些信息。

哪么Zipkin Server的地址又是在哪里指定的呢?答案是在application.properties中:

spring.zipkin.base-url=http://zipkin-server:9411

注意Zipkin Server的地址为zipkin-server

构建Docker镜像

为这两个服务创建相同的Dockerfile,用于生成Docker镜像:

FROM java:8-jre-alpine
RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.ustc.edu.cn/' /etc/apk/repositories
VOLUME /tmp
ADD build/libs/*.jar app.jar
RUN sh -c 'touch /app.jar'
ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar","/app.jar"]

构建容器镜像的步骤如下:

cd tracedemo
./gradlew build
docker build -t zipkin-demo-frontend .

cd ../tracebackend
./gradlew build
docker build -t zipkin-demo-backend .

构建镜像完成后用docker push命令上传到你的镜像仓库。

Zipkin Server

利用Annotation声明方式创建Zipkin

在build.gradle中引入Zipkin依赖包。

dependencies {
    compile('org.springframework.boot:spring-boot-starter')
    compile('io.zipkin.java:zipkin-server')
    runtime('io.zipkin.java:zipkin-autoconfigure-ui')
    testCompile('org.springframework.boot:spring-boot-starter-test')
}

在主程序Class增加一个注解@EnableZipkinServer

@SpringBootApplication
@EnableZipkinServer
public class ZipkinApplication {

    public static void main(String[] args) {
        SpringApplication.run(ZipkinApplication.class, args);
    }
}

application.properties将端口指定为9411。

server.port=9411

构建Docker镜像

Dockerfile和前面的两个服务一样,这里就不重复了。

在阿里云容器服务上部署

创建docker-compose.yml文件,内容如下:

version: "2"
services:
  zipkin-server:
    image: registry.cn-hangzhou.aliyuncs.com/jingshanlb/zipkin-demo-server
    labels:
      aliyun.routing.port_9411: http://zipkin
    restart: always

  frontend:
    image: registry.cn-hangzhou.aliyuncs.com/jingshanlb/zipkin-demo-frontend
    labels:
      aliyun.routing.port_8080: http://frontend
    links:
      - zipkin-server
      - backend
    restart: always

  backend:
    image: registry.cn-hangzhou.aliyuncs.com/jingshanlb/zipkin-demo-backend
    links:
      - zipkin-server
    restart: always

在阿里云容器服务上使用编排模版创建应用,访问zipkin端点,可以看到服务分析的效果。

访问前端应用3次,页面显示3次服务调用。

trace1

点击其中任意一个trace,可以看到请求链路上不同span所花费的时间。

trace2

进入Dependencies页面,还可以看到服务之间的依赖关系。

trace3

从这个过程可以看出,Zipkin和Spring Cloud的集成做得很好。而且对服务追踪分析的可视化也很直观。

注意的是,在生产环境中还需要为Zipkin配置数据库,这里就不详细介绍了。

本文的示例代码在此:https://github.com/binblee/zipkin-demo

小节

本文简单介绍了如何利用Zipkin对SpringCloud应用进行服务分析。在实际的应用场景中,Zipkin可以结合压力测试工具一起使用,分析系统在大压力下的可用性和性能。这部分内容未来会在DevOps系列中继续介绍。

本文转载自:https://yq.aliyun.com/articles/60165

共有 人打赏支持
voole

voole

粉丝 13
博文 83
码字总数 4329
作品 1
海淀
史上最简单的SpringCloud教程 | 第九篇: 服务链路追踪(Spring Cloud Sleuth)

转载请标明出处: http://blog.csdn.net/forezp/article/details/70162074 本文出自方志朋的博客 这篇文章主要讲述服务追踪组件zipkin,Spring Cloud Sleuth集成了zipkin组件。 一、简介 Ad...

forezp
2017/04/13
0
0
SpringCloud 微服务 (十六) 服务追踪 Zipkin

问题 在服务中,有一个接口,该A接口中又调用了其他服务的B、C、D接口,出现一个请求耗时大的问题,这时候并不知道该B、C、D接口中哪个接口造成的耗时量,然后比如确定C服务接口出现的耗时量大,但...

___大侠
07/21
0
0
基于docker部署的微服务架构(九): 分布式服务追踪 Spring Cloud Sleuth

前言 微服务架构中完成一项功能经常会在多个服务之间远程调用(RPC),形成调用链。每个服务节点可能在不同的机器上甚至是不同的集群上,需要能追踪整个调用链,以便在服务调用出错或延时较高时...

月冷X心寒
2016/11/28
1K
3
SpringCloud实战10-Sleuth

Spring-Cloud-Sleuth是Spring Cloud的组成部分之一,为SpringCloud应用实现了一种分布式追踪解决方案,其兼容了Zipkin, HTrace和log-based追踪,追踪微服务rest服务调用链路的问题,接触到zip...

狂小白
05/30
0
0
这些优秀的 Spring Cloud 开源软件,你知道几个?

Spring Cloud是一系列框架的有序集合。它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等,都可以用...

技术小能手
08/30
0
0

没有更多内容

加载失败,请刷新页面

加载更多

OSChina 周六乱弹 —— 放假前期焦虑症晚期

Osc乱弹歌单(2018)请戳(这里) 【今日歌曲】 @andonny :分享Matteo的单曲《Panama》: 《Panama》- Matteo 手机党少年们想听歌,请使劲儿戳(这里) @新垣吉衣OSC :我发现只要去有小朋友...

小小编辑
8分钟前
3
3
wait()被notify()后,接着执行wait()后面的语句

wait()被notify()后,接着执行wait()后面的语句

noteman
40分钟前
1
0
Ubuntu集群-使用MAAS开始裸机安装

Ubuntu使用MAAS装机的七个步骤。 1、Setup your hardware You need one small server for MAAS and at least one server which can be managed with a BMC. It is recommended to have the M......

openthings
52分钟前
3
0
OSX | SafariBookmarksSyncAgent意外退出解决方法

1. 启动系统, 按住⌘-R不松手2. 在实用工具(Utilities)下打开终端,输入csrutil disable, 然后回车; 你就看到提示系统完整性保护(SIP: System Integrity Protection)已禁用3. 输入reboot回车...

云迹
今天
4
0
面向对象类之间的关系

面向对象类之间的关系:is-a、has-a、use-a is-a关系也叫继承或泛化,比如大雁和鸟类之间的关系就是继承。 has-a关系称为关联关系,例如企鹅在气候寒冷的地方生活,“企鹅”和“气候”就是关...

gackey
今天
4
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部