加载中
【AI实战】快速掌握TensorFlow(三):激励函数

到现在我们已经了解了TensorFlow的特点和基本操作(见文章:快速掌握TensorFlow(一)),以及TensorFlow计算图、会话的操作(见文章:快速掌握TensorFlow(二)),接下来我们将继续学习掌握...

【AI实战】快速掌握TensorFlow(二):计算图、会话

在前面的文章中,我们已经完成了AI基础环境的搭建(见文章:Ubuntu + Anaconda + TensorFlow + GPU + PyCharm搭建AI基础环境),以及初步了解了TensorFlow的特点和基本操作(见文章:快速掌握...

2018/08/20 00:17
2.4W
【AI实战】快速掌握Tensorflow(一):基本操作

Tensorflow是Google开源的深度学习框架,来自于Google Brain研究项目,在Google第一代分布式机器学习框架DistBelief的基础上发展起来。Tensorflow于2015年11月在GitHub上开源,在2016年4月补...

2018/08/18 23:52
3.5W
【AI实战】动手训练自己的目标检测模型(YOLO篇)

在前面的文章中,已经介绍了基于SSD使用自己的数据训练目标检测模型(见文章:手把手教你训练自己的目标检测模型),本文将基于另一个目标检测模型YOLO,介绍如何使用自己的数据进行训练。 ...

【AI实战】手把手教你训练自己的目标检测模型(SSD篇)

目标检测是AI的一项重要应用,通过目标检测模型能在图像中把人、动物、汽车、飞机等目标物体检测出来,甚至还能将物体的轮廓描绘出来,就像下面这张图,是不是很酷炫呢,嘿嘿 在动手训练自己...

【AI实战】动手实现人脸识别程序

人脸识别在现实生活中有非常广泛的应用,例如iPhone X的识别人脸解锁屏幕、人脸识别考勤机、人脸识别开门禁、刷脸坐高铁,还有识别人脸虚拟化妆、美颜,甚至支付宝还推出了刷脸支付、建设银行...

【AI实战】训练第一个AI模型:MNIST手写数字识别模型

在上篇文章中,我们已经把AI的基础环境搭建好了(见文章:Ubuntu + conda + tensorflow + GPU + pycharm搭建AI基础环境),接下来将基于tensorflow训练第一个AI模型:MNIST手写数字识别模型。...

【AI实战】基础环境搭建(Ubuntu+conda+tensorflow+GPU+PyCharm)

为方便日常的深度学习模型开发与测试,在自己笔记本上搭建一个深度学习的基础环境,便于学习AI使用。本人使用的笔记本配置是CPU为8代i5,显卡为GTX1060,内存为8G,基本上可满足日常的AI研究...

27种深度学习主流神经网络

深度学习发展迅速,每天都会冒出不少新的神经网络架构,对于从事AI的专业人士而言,要全面追踪、了解这些新的架构非常费力。 ASIMOV Institute绘制当前所流行的27张神经网络节点图,方便查阅...

2018/08/08 21:49
1.7W

没有更多内容

加载失败,请刷新页面

没有更多内容

返回顶部
顶部