文档章节

tensorflow linear_regression 实例解析

守望者之父
 守望者之父
发布于 2017/01/22 00:40
字数 294
阅读 57
收藏 0

import tensorflow as tfimport numpy
import matplotlib.pyplot as plt
rng = numpy.random
# Parameters
learning_rate = 0.01
training_epochs = 2000
display_step = 50
# Training Data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]
# tf Graph Input
#placeholder类似JDBC里的PrepareStatement
X = tf.placeholder("float")
Y = tf.placeholder("float")
# Create Model
# Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")# Construct a linear model
activation = tf.add(tf.mul(X, W), b)#拟合 X * W + b
# Minimize the squared errors
# reduce_sum就是求和
# cost是真实值y与拟合值h<hypothesis>之间的距离
cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples)
#L2 loss
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# Fit all training data
# training_epochs是迭代次数
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
#Display logs per epoch step

if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
"W=", sess.run(W), "b=", sess.run(b)
print "Optimization Finished!"
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print "Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n'
# Testing example, as requested (Issue #2)
test_X = numpy.asarray([6.83,4.668,8.9,7.91,5.7,8.7,3.1,2.1])
test_Y = numpy.asarray([1.84,2.273,3.2,2.831,2.92,3.24,1.35,1.03])
print "Testing... (L2 loss Comparison)"
testing_cost = sess.run(tf.reduce_sum(tf.pow(activation-Y, 2))/(2*test_X.shape[0]),
feed_dict={X: test_X, Y: test_Y}) #same function as cost above
print "Testing cost=", testing_cost
print "Absolute l2 loss difference:", abs(training_cost - testing_cost)
#Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(test_X, test_Y, 'bo', label='Testing data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()

© 著作权归作者所有

守望者之父
粉丝 7
博文 89
码字总数 62422
作品 0
南京
私信 提问
TensorFlow入门(一)

目录 TensorFlow简介 TensorFlow基本概念 Using TensorFlow Optimization & Linear Regression & Logistic Regression 1. TensorFlow简介   TensorFlow由Google的Brain Team创立,于2015年......

jclian91
2018/08/13
0
0
Keras 深度学习框架介绍----一起来慢慢走进deep learning

Introduce Keras是一个高级API,用Python编写,能够在TensorFlow、Theano或CNTK上运行。Keras提供了一个简单和模块化的API来创建和训练神经网络,隐藏了大部分复杂的细节。 How to install k...

qq_15642411
2018/04/20
0
0
ApacheCN 人工智能知识树 v1.0

Special Sponsors 贡献者:飞龙 版本:v1.0 最近总是有人问我,把 ApacheCN 这些资料看完一遍要用多长时间,如果你一本书一本书看的话,的确要用很长时间。但我觉得这是非常麻烦的,因为每本...

ApacheCN_飞龙
05/18
0
0
2018 AI、机器学习、深度学习与 Tensorflow 相关优秀书籍、课程、示例链接集锦

DataScienceAI Book Links | 机器学习、深度学习与自然语言处理领域推荐的书籍列表 人工智能、深度学习与 Tensorflow 相关书籍、课程、示例列表是笔者 Awesome Links 系列的一部分;对于其他...

王下邀月熊
2018/05/21
0
0
TensorFlow实践——Multilayer Perceptron

本文是在Softmax Regression的基础上增加了一个隐含层,实现了Multilayer Perceptron的一个模型,Multilayer Perceptron是深度学习模型的基础,对于Softmax Regression的TensorFlow实现,可以...

google19890102
2018/04/26
0
0

没有更多内容

加载失败,请刷新页面

加载更多

SpringBoot中 集成 redisTemplate 对 Redis 的操作(二)

SpringBoot中 集成 redisTemplate 对 Redis 的操作(二) List 类型的操作 1、 向列表左侧添加数据 Long leftPush = redisTemplate.opsForList().leftPush("name", name); 2、 向列表右......

TcWong
今天
7
0
排序––快速排序(二)

根据排序––快速排序(一)的描述,现准备写一个快速排序的主体框架: 1、首先需要设置一个枢轴元素即setPivot(int i); 2、然后需要与枢轴元素进行比较即int comparePivot(int j); 3、最后...

FAT_mt
昨天
4
0
mysql概览

学习知识,首先要有一个总体的认识。以下为mysql概览 1-架构图 2-Detail csdn |简书 | 头条 | SegmentFault 思否 | 掘金 | 开源中国 |

程序员深夜写bug
昨天
10
0
golang微服务框架go-micro 入门笔记2.2 micro工具之微应用利器micro web

micro web micro 功能非常强大,本文将详细阐述micro web 命令行的功能 阅读本文前你可能需要进行如下知识储备 golang分布式微服务框架go-micro 入门笔记1:搭建go-micro环境, golang微服务框架...

非正式解决方案
昨天
9
0
前端——使用base64编码在页面嵌入图片

因为页面中插入一个图片都要写明图片的路径——相对路径或者绝对路径。而除了具体的网站图片的图片地址,如果是在自己电脑文件夹里的图片,当我们的HTML文件在别人电脑上打开的时候图片则由于...

被毒打的程序猿
昨天
9
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部