容器化利器!SysOM 从内核的视角观测内存"黑洞"|龙蜥技术

原创
2023/11/09 20:00
阅读数 15
AI总结

文/龙蜥社区系统运维SIG

01
背景

容器化现阶段已经是构建企业 IT 架构的最佳实践。云原生容器化的部署架构,相较于传统 IDC 部署架构的 IT 架构方案,已经成为兼具高效运维及成本控制的业界事实标准。

但容器化带来的都是好处么?容器化屏蔽了 IDC 基础设施和云资源的同时,也带来了容器引擎层的不透明,现有的云原生可观测体系还无法覆盖。

据我们统计,大量超过千节点规模的生产级 JAVA on K8S 的用户都遇到过内存"黑洞"导致的 OOM 问题,以及大规模集群使用上的容器引擎层 CGroup 问题也会使得用户对容器化望而却步。

龙蜥社区系统运维 SIG 联合龙蜥社区理事长单位阿里云容器服务 ACK 团队 进行合作,通过对多个头部行业客户的千万核规模的 Kubernetes 集群沉淀了丰富的容器化迁移专业经验,以及结合 Alinux 对操作系统 kernel 层的专业增强,通过与云原生容器服务结合,使容器引擎层不再“黑盒”,让用户放心容器化。

02

常见容器化内存“黑洞问题”

容器内存组成剖析

Kubernetes 采用内存工作集(workingset)来监控和管理容器的内存使用,当容器内存使用量超过了设置的内存限制或者节点出现内存压力时,kubernetes 会根据 workingset 来决定是否驱逐或者杀死容器。

  • 内存工作集计算公式:

Workingset = inactive_anon + active_anon + active_file。其中 inactive_anon 和 active_anon 是程序匿名内存总大小。active_file 是活跃文件缓存大小。

  • 匿名内存

匿名内存是指没有关联到文件的内存,例如进程的堆、栈、数据段等,有以下几种部分组成:
匿名映射 :程序通过 mmap 系统调用创建的没有关联文件的内存映射。
:程序通过 malloc/new 或 brk 系统调用分配的动态内存。
:用于存储函数参数和局部变量的内存。

数据段:用于存储已初始化和未初始化的全局变量和静态变量的内存。

  • 活跃文件缓存

程序读写文件会产生文件缓存(file cache),其中最近多次使用的缓存称为 active file cache,通常不 容易被系统回收。

(图/Kernel Level Memory Distribution)

下面介绍通过 SysOM 监控来排查 Pod workingset 高的问题。

定位步骤一:定位哪些内存导致 workingSet 高

根据workingset计算公式:workingset = inactive_anon + active_anon + active_file 查看 PodMonitor 监控大盘中的 woringkset 监控,找到内存最大的类型,这里发现是 active file cache 占比较大。

(图/SysOM 监控提供 Pod 维度的操作系统内核层内存各组成成分监控)

发现问题步骤中,SysOM 提供通过 Top 分析快速定位集群中 active file cache 内存消耗最大的 Pod。

通过 Pod Cache (缓存内存)、InactiveFile(非活跃文件内存占用)、InactiveAnon(非活跃匿名内存占用)、Dirty Memory(系统脏内存占用)等不同内存成分的问题的监控展示,发现常见的 Pod 内存黑洞问题。

(图/通过 Top 分析找出集群中 active file cache 内存消耗最大的 Pod)

(图/SysOM 提供 Pod 维度的详细内存各组成成分监控统计)

定位步骤二:定位具体哪些文件导致 active file cache 高

查看 PodMonitor 监控大盘中的 file cache 监控,发现主要是 ack-ai-dashboard-admin-ui-77564df84c-z6bs2 容器在对 /workspace/ai-dashboard.jar 文件进行IO读写时,产生了较大的内存 Cache 缓存。

若 Pod 内存缓存较大,严重会导致 Pod 工作内存占用升高,这部分 Cache 内存会成为 Pod 工作内存的“黑洞”部分难以定为,产生线上常见的 Pod 内存黑洞导致的 OOM 驱逐问题,最终影响 Pod 所在的业务体验。

03

ACK 提供容器化内核层问题的完整解决方案
SysOM 是由龙蜥社区系统运维 SIG 打造的一站式操作系统运维平台,能够帮助用户在统一平台上实现主机管理、操作系统迁移、宕机分析、系统监控、异常诊断、日志审计、安全管控等复杂操作系统管理。2023 年 8 月,已正式推出围绕观测和系统运维的自动化运维平台 SysOM 3.0 版本

发现问题 - SysOM 系统容器监控

基于 SysOM,阿里云容器服务 ACK 拥有独有的操作系统 kernel 层的容器监控可观测能力。在客户容器化迁移中,社区、其他云厂商的容器服务没有很好地解决的内存黑洞、存储黑洞等问题,基于 SysOM 可以很好的观测、预警、诊断出问题。

SysOM 提供操作系统内核层 Pod、Node 维度监控大盘,实时监控内存、网络、存储的系统层指标。

(图/SysOM Pod 维度监控大盘)

(图/SysOM Node 维度监控大盘)

SysOM 功能、指标详细请参考文档:

https://help.aliyun.com/document_detail/2560259.html

解决问题 - Koordinator QoS精细化调度功能

内存黑洞问题如何修复,阿里云容器服务通过精细化调度功能,依托 Koordinator 开源项目,ack-koordinator 为容器提供内存服务质量 QoS(Quality of Service)保障能力,在确保内存资源公平性的前提下,改善应用在运行时的内存性能。本文简介容器内存 QoS 功能,具体说明请参见容器内存 QoS[1]

容器在使用内存时主要有以下两个方面的约束:

  • 自身内存限制:当容器自身的内存(含Page Cache)接近容器上限时,会触发容器维度的内存回收,这个过程会影响容器内应用的内存申请和释放的性能。若内存申请得不到满足则会触发容器 OOM。

  • 节点内存限制:当容器内存超卖(Memory Limit>Request)导致整机内存不足,会触发节点维度的全局内存回收,这个过程对性能影响较大,极端情况甚至导致整机异常。若回收不足则会挑选容器 OOM Kill。

针对上述典型的容器内存问题,ack-koordinator 提供了以下增强特性:

  • 容器内存后台回收水位:当 Pod 内存使用接近 Limit 限制时,优先在后台异步回收一部分内存,缓解直接内存回收带来的性能影响。

  • 容器内存锁定回收/限流水位:Pod 之间实施更公平的内存回收,整机内存资源不足时,优先从内存超用(Memory Usage>Request)的 Pod 中回收内存,避免个别Pod造成整机内存资源质量下降。

  • 整体内存回收的差异化保障:在 BestEffort 内存超卖场景下,优先保障 Guaranteed/Burstable Pod 的内存运行质量。

关于 ACK 容器内存 QoS 启用的内核能力,详见 Alibaba Cloud Linux 的内核功能与接口概述 [2]

(图/ack-koordinator 为容器提供内存服务质量 QoS(Quality of Service)保障能力)

在通过第一步观测发现容器内存黑洞问题之后,可以结合通过 ACK 精细化调度功能针对性挑选内存敏感的 Pod 启用容器内存 QoS 功能,完成闭环修复。

相关链接:

1. 容器内存链接:

https://help.aliyun.com/zh/ack/ack-managed-and-ack-dedicated/user-guide/memory-qos-for-containers

2. Alibaba Cloud Linux的内核功能与接口概述:
https://help.aliyun.com/zh/ecs/user-guide/overview-23

—— 完 ——

加入龙蜥社群

加入微信群:添加社区助理-龙蜥社区小龙(微信:openanolis_assis),备注【龙蜥】与你同在;加入钉钉群:扫描下方钉钉群二维码。


关于龙蜥

龙蜥社区是立足云计算打造面向国际的 Linux  服务器操作系统开源根社区及创新平台。龙蜥操作系统(Anolis OS)是龙蜥社区推出的 Linux 发行版,拥有三大核心能力:提效降本、更加稳定、更加安全。
目前, Anolis OS 23  已发布,全面支持智能计算,兼容主流 AI 框架,支持一键安装 nvidia GPU 驱动、CUDA 库等,完善适配 Intel、兆芯、鲲鹏、龙芯等芯片,并提供全栈国密支持。

加入我们,一起打造面向云时代的操作系统!

往期精彩推荐
1.人人都可以参与开源!龙蜥社区最不容错过的开发者活动来了
2.龙蜥社区理事长走进中兴 交流会圆满结束!
3.《可信计算技术最佳实践白皮书》发布,龙蜥助力可信计算技术应用推广(可下载)
4.未来已来!2023 云栖大会龙蜥操作系统专场精彩回顾

5.重磅!"OASA 安全适配认证计划"发布 牢筑龙蜥安全基石


▼ 欢迎点击阅读原文,查看「Alibaba Cloud Linux」主页。


本文分享自微信公众号 - OpenAnolis龙蜥(OpenAnolis)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

展开阅读全文
加载中
点击引领话题📣 发布并加入讨论🔥
0 评论
0 收藏
0
分享
AI总结
返回顶部
顶部