加载中
使用深度学习进行图像去噪

图像去噪是研究人员几十年来试图解决的一个经典问题。在早期,研究人员使用滤波器器来减少图像中的噪声。它们曾经在噪音水平合理的图像中工作得相当好。然而,应用这些滤镜会使图像模糊。如果...

2021/01/31 10:24
1.5K
低成本的二值神经网络介绍以及它能代替全精度网络吗?

每年都会开发出更深的模型来执行各种任务,例如对象检测,图像分割等,这些任务始终能够击败最新模型。但是,人们越来越关注使模型更轻便,更高效,以便它们可以在边缘设备和移动设备上运行。...

使用GCP开发带有强化学习功能的Roguelike游戏

强化学习(RL)的许多应用都是专门针对将人工从训练循环中脱离而设计的。例如,OpenAI Gym [1]提供了一个训练RL模型以充当Atari游戏中的玩家的框架,许多问扎根都描述了将RL用于机器人技术。...

有比Pandas 更好的替代吗?对比Vaex, Dask, PySpark, Modin 和Julia

表格是存储数据的最典型方式,在Python环境中没有比Pandas更好的工具来操作数据表了。尽管Pandas具有广泛的能力,但它还是有局限性的。比如,如果数据集超过了内存的大小,就必须选择一种替代...

谷歌新语言模型Switch Transformer

在过去的三年中,基于transformer的语言模型(LMs)在自然语言处理(NLP)领域一直占据着主导地位。Transformer 通常是在大量非结构化文本上预先训练的巨大网络,它能够捕捉有用的语言属性。然后...

从Wide and Deep、DeepFM到DLRM,现代的推荐系统算法研究

2019年5月,Facebook开放了他们的一些推荐方法,并引入了DLRM(深度学习推荐模型)。这篇文章旨在解释DLRM和其他现代推荐方法是如何以及为什么能够如此出色地工作的,通过研究它们是如何从该领...

不使用直方图的6个原因以及应该使用哪个图替代

直方图并非没有偏见。实际上,它们是武断的,可能会导致对数据的错误结论。 无论你是在与高管开会,还是在与数据狂人开会,有一件事是可以肯定的:总会看到一个直方图。 直方图非常直观:任何人...

2021/01/25 09:23
217
GANs是如何创造出高分辨率的图像的

本文主要介绍DCGAN的适应渐进式增长创建高分辨率图像的思路 深度卷积生成对抗网络是2020年最精致的神经网络体系结构。生成模型可以追溯到60年代,但是Ian Goodfellow在2014年创造的GAN,使得...

使用Tensorflow模仿HearthArena炉石卡片排名算法

在这篇文章中,我将重新创造卡牌游戏《炉石传说》卡组制作工具的卡牌排名算法 什么是《炉石传说》 炉石传说-一个虚拟纸牌游戏 对于那些不知道的人来说,《炉石传说》是一款策略纸牌游戏,其目...

使用Scikit-Learn pipeline 减少ML项目的代码量并提高可读性

在构建和部署机器学习模型时,最佳好的方法是使它们尽可能的成为端到端的工作,这意味着尝试将大多数与模型相关的数据转换分组到一个对象中。 在ML世界中,采用pipeline的最简单方法是使用S...

使用遮挡分析进行DNN模型的可解释性说明概述

深度神经网络的解释方法有很多,每种解释方法都有各自的优缺点。在大多数情况下,我们感兴趣的是局部解释方法,即对特定输入的网络输出的解释,因为DNNs往往过于复杂,无法进行全局解释(独立...

用PyTorch和预训练的Transformers 创建问答系统

介绍 问题回答是信息检索和自然语言处理(NLP)中的一项任务,该任务调查可以回答人类以自然语言提出的问题的程序。在“提取性问题解答”中,提供了一个上下文,以便模型可以引用该上下文并预...

在向量化NumPy数组上进行移动窗口操作

今天很有可能你已经做了一些使用滑动窗口(也称为移动窗口)的事情,而你甚至不知道它。例如:许多编辑算法都是基于移动窗口的。在GIS中做地形分析的大多数地形栅格度量(坡度、坡向、山坡阴影等...

2021/01/19 08:58
319
5个简单的步骤使用Pytorch进行文本摘要总结

介绍 文本摘要是自然语言处理(NLP)的一项任务,其目的是生成源文本的简明摘要。不像摘录摘要,摘要不仅仅简单地从源文本复制重要的短语,还要提出新的相关短语,这可以被视为释义。摘要在不同...

泊松分布

一个故事:你已经做了10年的自由职业者了。到目前为止,你的平均年收入约为8万美元。今年,你觉得自己陷入了困境,决定要达到6位数。要做到这一点,你需要先计算这一令人兴奋的成就发生的概率...

用Pandas和Streamlit对时间序列数据集进行可视化过滤

介绍 我们每天处理的数据最多的类型可能是时间序列数据。基本上,使用日期,时间或两者同时索引的任何内容都可以视为时间序列数据集。在我们工作中,可能经常需要使用日期和时间本身来过滤时...

图解Transformer — Attention Is All You Need

2017年谷歌大脑在《注意力是你所需要的一切》一文中解释了Transformer 。本文是随着自然语言处理领域的发展而来的。许多最先进的NLP模型都是以Transformer 为基础建立的。 Transformers是人们...

​数据相关的4种主要角色概述

“我们每天产生的数据量真是令人难以置信。以我们目前的速度,每天会产生2.5万亿字节的数据,但这个速度只会随着物联网(IoT)的发展而加快。——我们每天会创建多少数据?每个人都应该知道的令...

使用Plotly创建带有回归趋势线的时间序列可视化图表

数据 为了说明这是如何工作的,让我们假设我们有一个简单的数据集,它有一个datetime列和几个其他分类列。您感兴趣的是某一列(“类型”)在一段时间内(“日期”)的汇总计数。列可以是数字、类...

2021/01/13 08:45
168
Pyspark处理数据中带有列分隔符的数据集

本篇文章目标是处理在数据集中存在列分隔符或分隔符的特殊场景。对于Pyspark开发人员来说,处理这种类型的数据集有时是一件令人头疼的事情,但无论如何都必须处理它。 数据集基本上如下所示:...

2021/01/12 08:14
217

没有更多内容

加载失败,请刷新页面

返回顶部
顶部