加载中
基于可变自动编码器(VAE)的生成建模,理解可变自动编码器背后的原理

理解可变自动编码器背后的原理 使用VAE生成的人脸生成 生成模型是机器学习中一个有趣的领域,在这个领域中,网络学习数据分布,然后生成新的内容,而不是对数据进行分类。生成建模最常用的两...

适用于稀疏的嵌入、独热编码数据的损失函数回顾和PyTorch实现

在稀疏的、独热编码编码数据上构建自动编码器 自1986年[1]问世以来,在过去的30年里,通用自动编码器神经网络已经渗透到现代机器学习的大多数主要领域的研究中。在嵌入复杂数据方面,自动编码...

2020/09/29 09:21
1.6K
从单词嵌入到文档距离 :WMD一种有效的文档分类方法

文档分类和文档检索已显示出广泛的应用。文档分类的重要部分是正确生成文档表示。马特·库斯纳(Matt J. Kusner)等人在2015年提出了Word Mover’s Distance(WMD)[1],其中将词嵌入技术用于...

2020/09/28 08:34
336
如何管理和组织一个机器学习项目

本文主要分享一些组织管理机器学习项目的实践经验 Python Python 是机器学习项目开发的主要使用语言之一。它包含了大量的库/包可以用于机器学习: numpy:适用于多维数组、数值计算。常用于数...

在GAN中通过上下文的复制和粘贴,在没有数据集的情况下生成新内容

魔改StyleGAN模型为图片中的马添加头盔 介绍 GAN体系结构一直是通过AI生成内容的标准,但是它可以实际在训练数据集中提供新内容吗?还是只是模仿训练数据并以新方式混合功能? 在本文中,我将...

机器学习中的标签泄漏介绍及其如何影响模型性能

您是否对完美或接近完美的模型表现不知所措?你的快乐被出卖了吗? 简而言之,当您要预测的信息直接或间接出现在训练数据集中时,就会发生标签泄漏或目标泄漏。它会导致模型夸大其泛化误差,并...

2020/09/25 08:36
271
解决数独问题用人工智能还是量子计算?

作为一种有趣的棋盘游戏,数独诞生100周年之后,它是如何成为计算研究的焦点之一的呢?探索如何使用人工智能或量子计算机从头开始创建一个智能数独求解器。 在深入探究之前,先来了解一下历史...

2020/09/24 09:04
163
通过实例理解如何选择正确的概率分布

概率分布 概率分布是描述获得事件可能值的数学函数。概率分布可以是离散的,也可以是连续的。离散分布是指数据只能取某些值,而连续分布是指数据可以取特定范围内的任何值(可能是无限的)。 ...

2020/09/23 08:25
214
8种交叉验证类型的深入解释和可视化介绍

交叉验证(也称为“过采样”技术)是数据科学项目的基本要素。它是一种重采样过程,用于评估机器学习模型并访问该模型对独立测试数据集的性能。 在本文中,您可以阅读以下大约8种不同的交叉验...

2020/09/22 08:32
268
使用梯度上升欺骗神经网络,让网络进行错误的分类

在本教程中,我将将展示如何使用梯度上升来解决如何对输入进行错误分类。 出如何使用梯度上升改变一个输入分类 神经网络是一个黑盒。理解他们的决策需要创造力,但他们并不是那么不透明。 在...

2020/09/21 08:35
1.4K
15个应该掌握的Jupyter Notebook 使用技巧

Jupyter Notebook是一个基于浏览器的交互式编程环境(REPL, read eval print loop),它主要构建在IPython等开源库上,允许我们在浏览器上运行交互式python代码。并且有许多有趣的插件和神奇...

Pandas处理时间序列数据的20个关键知识点

时间序列数据有许多定义,它们以不同的方式表示相同的含义。一个简单的定义是时间序列数据包括附加到顺序时间点的数据点。 时间序列数据的来源是周期性的测量或观测。许多行业都存在时间序列...

2020/09/19 07:09
122
在PyTorch中使用Seq2Seq构建的神经机器翻译模型

在这篇文章中,我们将构建一个基于LSTM的Seq2Seq模型,使用编码器-解码器架构进行机器翻译。 本篇文章内容: 介绍 数据准备和预处理 长短期记忆(LSTM) - 背景知识 编码器模型架构(Seq2Seq) 编...

使用卡尔曼滤波平滑时间序列,提高时序预测的准确率

在时间序列预测中,脏乱数据的存在会影响最终的预测结果。这是肯定的,尤其是在这个领域,因为时间依赖性在处理时间序列时起着至关重要的作用。 噪音或异常值必须按照特别的解决方案小心处理...

反向传播算法:定义,概念,可视化

定义 向前传播 通常,当我们使用神经网络时,我们输入某个向量x,然后网络产生一个输出y,这个输入向量通过每一层隐含层,直到输出层。这个方向的流动叫做正向传播。 在训练阶段,输入最后可...

2020/09/16 08:33
9K
深入SVM:支持向量机核的作用是什么

您可能听说过所谓的内核技巧,这是一种支持向量机(SVMs)处理非线性数据的小技巧。这个想法是将数据映射到一个高维空间,在这个空间中数据变成线性,然后应用一个简单的线性支持向量机。听起来...

使用卷积神经网络构建图像分类模型检测肺炎

在本篇文章中,我将概述如何使用卷积神经网络构建可靠的图像分类模型,以便从胸部x光图像中检测肺炎的存在。 肺炎是一种常见的感染,它使肺部的气囊发炎,引起呼吸困难和发烧等症状。尽管肺炎...

基于树的机器学习模型的演化

基于树的分类模型是一种监督机器学习算法,它使用一系列条件语句将训练数据划分为子集。每一次连续的分割都会给模型增加一些复杂性,这些复杂性可以用来进行预测。最终结果模型可以可视化为描...

可以提高你的图像识别模型准确率的7个技巧

假定,你已经收集了一个数据集,建立了一个神经网络,并训练了您的模型。 但是,尽管你投入了数小时(有时是数天)的工作来创建这个模型,它还是能得到50-70%的准确率。这肯定不是你所期望的。...

在PyTorch中使用DistributedDataParallel进行多GPU分布式模型训练

先进的深度学习模型参数正以指数级速度增长:去年的GPT-2有大约7.5亿个参数,今年的GPT-3有1750亿个参数。虽然GPT是一个比较极端的例子但是各种SOTA模型正在推动越来越大的模型进入生产应用程...

2020/09/11 08:33
3.4K

没有更多内容

加载失败,请刷新页面

返回顶部
顶部