农业知识图谱(KG):农业领域的信息检索,命名实体识别,关系抽取,分类树构建,数据挖掘

04/23 07:37
阅读数 81


向AI转型的程序员都关注了这个号👇👇👇

大数据挖掘DT机器学习  公众号: datayx


该课题是由上海市农业委员会信息中心主持,以“致富农民、服务市民、提高行政管理效能”为目标,充分发挥大数据在农业农村发展中的重要功能和巨大潜力,重点建设上海市级农业农村大数据中心,促进信息资源的共建共享和创新应用。


代码,以及项目部署详细方法获取:

关注微信公众号 datayx  然后回复 知识图谱即可获取。



项目配置

系统需要安装:

  • scrapy     ---爬虫框架

  • django     ---web框架

  • neo4j       ---图数据库

  • thulac      ---分词、词性标注

  • py2neo    ---python连接neo4j的工具

  • pyfasttext    ---facebook开源的词向量计算框架

  • pinyin  ---获取中文首字母小工具

  • 预训练好的词向量模型wiki.zh.bin(仅部署网站的话不需要下载)  

     ---下载链接:http://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.zh.zip

  • mongoDB  ---存储文档数据

  • pymongo  ---python操作mongoDB的工具

(以上部分除了neo4j在官网下,wiki.zh.bin在亚马逊s3下载,其它均可直接用pip3 install 安装)



农业实体识别+实体分类



点击实体的超链接,可以跳转到词条页面(词云采用了词向量技术):



实体查询

实体查询部分,我们能够搜索出与某一实体相关的实体,以及它们之间的关系:




关系查询

关系查询即查询三元组关系entity1-[relation]->entity2 , 分为如下几种情况:

  • 指定第一个实体entity1

  • 指定第二个实体entity2

  • 指定第一个实体entity1和关系relation

  • 指定关系relation和第二个实体entity2

  • 指定第一个实体entity1和第二个实体entity2

  • 指定第一个实体entity1和第二个实体entity2以及关系relation

下图所示,是指定关系relation和第二个实体entity2的查询结果





知识的树形结构

农业知识概览部分,我们能够列出某一农业分类下的词条列表,这些概念以树形结构组织在一起:




农业分类的树形图:



训练集标注

我们还制作了训练集的手动标注页面,每次会随机的跳出一个未标注过的词条。链接:http://localhost:8000/tagging-get , 手动标注的结果会追加到/label_data/labels.txt文件末尾:


我们将这部分做成了小工具,可复用:https://github.com/qq547276542/LabelMarker



同样的,我们制作了标注关系提取训练集的工具,如下图所示


如果Statement的标签是对的,点击True按钮;否则选择一个关系,或者输入其它关系。若当前句子无法判断,则点击Change One按钮换一条数据。


说明: Statement是/wikidataSpider/TrainDataBaseOnWiki/finalData中train_data.txt中的数据,我们将它转化成json,导入到mongoDB中。标注好的数据同样存在MongoDB中另一个Collection中。


思路


图谱实体获取:

1.根据19000条农业网词条,按照筛法提取名词(分批进行,每2000条1批,每批维护一个不可重集合)

2.将9批词做交集,生成农业词典

3.将词典中的词在互动百科中进行爬取,抛弃不存在的页面,提取页面内容,存到数据库中

4.根据页面内容,提取每一个词条页面的特征,构造相似度的比较方法,使用KNN进行分类

5.最后获取每个词条的所属类别,同时能够剔除不属于农业的无关词条


命名实体识别:

使用thulac工具进行分词,词性标注,命名实体识别(仅人名,地名,机构名) 为了识别农业领域特定实体,我们需要:

  1. 分词,词性标注,命名实体识别

  2. 以识别为命名实体(person,location,organzation)的,若实体库没有,可以标注出来

  3. 对于非命名实体部分,采用一定的词组合和词性规则,在O(n)时间扫描所有分词,过滤掉不可能为农业实体的部分(例如动词肯定不是农业实体)

  4. 对于剩余词及词组合,匹配知识库中以分好类的实体。如果没有匹配到实体,或者匹配到的实体属于0类(即非实体),则将其过滤掉。

  5. 实体的分类算法见下文。



HudongItem



页面分类

分类器:KNN算法

  • 无需表示成向量,比较相似度即可

  • K值通过网格搜索得到



定义两个页面的相似度sim(p1,p2):

  • title之间的词向量的余弦相似度(利用fasttext计算的词向量能够避免out of vocabulary)

  • 2组openType之间的词向量的余弦相似度的平均值

  • 相同的baseInfoKey的IDF值之和(因为‘中文名’这种属性贡献应该比较小)

  • 相同baseInfoKey下baseInfoValue相同的个数

  • 预测一个页面时,由于KNN要将该页面和训练集中所有页面进行比较,因此每次预测的复杂度是O(n),n为训练集规模。在这个过程中,我们可以统计各个分相似度的IDF值,均值,方差,标准差,然后对4个相似度进行标准化:(x-均值)/方差

  • 上面四个部分的相似度的加权和为最终的两个页面的相似度,权值由向量weight控制,通过10折叠交叉验证+网格搜索得到



Labels:(命名实体的分类)





阅读过本文的人还看了以下:


2018数据可视分析挑战赛-二等奖作品及历年优秀作品


lightgbm模型实战案例:京东金融信贷需求预测


阿里音乐流行趋势预测-代码分享



《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码



不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

长按图片,识别二维码,点关注




本文分享自微信公众号 - 机器学习AI算法工程(datayx)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

展开阅读全文
打赏
0
0 收藏
分享
加载中
更多评论
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部