加载中
从感知机到神经网络简略

最热门的深度学习,想必很多人都想了解学习,网络上也有不少资料;小编也希望可以从头开始,更为透彻地去理解原理机制,这样在日后可以在深度学习框架实战的学习上更为轻松。那我们就从头开始...

【深度学习】 神经网络为何非要激活函数?

作者 | Vandit Jain 编译 | 龚倩 编辑 | 丛末 来源 | AI科技评论 激活函数是神经网络中一个至关重要的概念,决定了某个神经元是否被激活,判断该神经元获得的信息是否有用,并决定该保留还是...

2020/04/26 20:27
102
如何画出漂亮的神经网络图?

来源: https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network 1. draw_convnet 一个用于画卷积神经网络的Python脚本 https://github.com/gwding/...

全卷积神经网络(FCN)

回顾 上期我们一起学习了,关于传统的目标检测算法的大致思路,通常是利用滑动窗口进行选取目标候选框,然后利用一些算法进行特征提取,最后再扔到分类器中去检测分类,这样效率上来说是比较...

全卷积神经网络(FCN)

回顾 上期我们一起学习了,关于传统的目标检测算法的大致思路,通常是利用滑动窗口进行选取目标候选框,然后利用一些算法进行特征提取,最后再扔到分类器中去检测分类,这样效率上来说是比较...

全卷积神经网络(FCN)

回顾 上期我们一起学习了,关于传统的目标检测算法的大致思路,通常是利用滑动窗口进行选取目标候选框,然后利用一些算法进行特征提取,最后再扔到分类器中去检测分类,这样效率上来说是比较...

RNN循环神经网络之通俗理解!

循环神经网络RecurrentNeural Network (RNN),是一个拥有对时间序列显示建模能力的神经网络。RNN相对于传统前馈神经网络的“循环”之处具体表现为RNN网络会对之前输入的信息进行记忆归纳,...

CNN卷积神经网络之通俗理解!

定义: 简而言之,卷积神经网络(Convolutional Neural Networks)是一种深度学习模型或类似于人工神经网络的多层感知器,常用来分析视觉图像。卷积神经网络的创始人是着名的计算机科学家Yan...

卷积神经网络各种池化

在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合)。图像具有一种"静态性"的属性,这也就意味着在...

3 个经典的卷积神经网络案例分析

本文将以 Alex-Net、VGG-Nets、Network-In-Network 为例,分析几类经典的卷积神经网络案例。 在此请读者注意,此处的分析比较并不是不同网络模型精度的“较量”,而是希望读者体会卷积神经网...

卷积神经网络工作原理直观解释

其实我们在做线性回归也好,分类(逻辑斯蒂回归)也好,本质上来讲,就是把数据进行映射,要么映射到一个多个离散的标签上,或者是连续的空间里面,一般简单的数据而言,我们很好拟合,只要线...

深度学习精炼笔记:卷积神经网络基础

1. Computer Vision 机器视觉(Computer Vision)是深度学习应用的主要方向之一。一般的CV问题包括以下三类: Image Classification Object detection Neural Style Transfer 下图展示了一个...

卷积神经网络工作原理直观解释

其实我们在做线性回归也好,分类(逻辑斯蒂回归)也好,本质上来讲,就是把数据进行映射,要么映射到一个多个离散的标签上,或者是连续的空间里面,一般简单的数据而言,我们很好拟合,只要线...

卷积神经网络为什么能称霸计算机视觉领域?

来源:图灵人工智能 摘要:在机器视觉和其他很多问题上,卷积神经网络取得了当前最好的效果,它的成功促使我们思考一个问题,卷积神经网络为什么会这么有效?在本文中,将为大家分析卷积神经...

修改一个像素,就能让神经网络识别图像出错

用于识别图片中物体的神经网络可以被精心设计的对抗样本欺骗,这个问题目前在计算机视觉领域备受关注。此前,生成对抗样本通常需要向原图片中加入一些特定的噪点(参见:经得住考验的「假图片...

深层卷积神经网络在路面分类中的应用

编者按:路面峰值附着系数是实现车辆精确运动控制的关键参数。现有的路面识别方法多是基于车辆动力学构建状态观测器实现。此类方法通常适用于车辆加速和减速期间,在轮胎力饱和的情况下,例如...

一文看懂各种神经网络优化算法:从梯度下降到Adam方法

王小新 编译自 Medium 量子位 出品 | 公众号 QbitAI 在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是A...

一文看懂各种神经网络优化算法:从梯度下降到Adam方法

来自 | Medium 编译 | 量子位 在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法? 这篇文章介绍...

【干货】雾霾太重?深度神经网络教你如何图像去雾

编者按:本文作者蔡博仑,华南理工大学在读博士研究生。主要研究方向,机器学习,计算机视觉,图像处理等。 导读 北京城被中度污染天气包围,到处都是灰蒙蒙一片——雾霾天又来了。从11日起,...

看了这7篇论文,你会完全掌握卷积神经网络!

目前,作为深度学习的代表算法之一,卷积神经网络(Convolutional Neural Networks,CNN)在计算机视觉、分类等领域上,都取得了当前最好的效果。 后来,基于深度神经网络和搜索树的智能机器...

没有更多内容

加载失败,请刷新页面

返回顶部
顶部