Python图像处理丨图像缩放、旋转、翻转与图像平移

原创
2022/05/26 16:58
阅读数 1.7K
摘要:本篇文章主要讲解Python调用OpenCV实现图像位移操作、旋转和翻转效果,包括四部分知识:图像缩放、图像旋转、图像翻转、图像平移。

本文分享自华为云社区《[Python图像处理] 六.图像缩放、图像旋转、图像翻转与图像平移》,作者:eastmount 。

本篇文章主要讲解Python调用OpenCV实现图像位移操作、旋转和翻转效果,包括四部分知识:图像缩放、图像旋转、图像翻转、图像平移。全文均是基础知识,希望对您有所帮助。

一.图像缩放

图像缩放主要调用resize()函数实现,具体如下:

result = cv2.resize(src, dsize[, result[. fx[, fy[, interpolation]]]])

其中src表示原始图像,dsize表示缩放大小,fx和fy也可以表示缩放大小倍数,他们两个(dsize或fx\fy)设置一个即可实现图像缩放。例如:

  1. result = cv2.resize(src, (160,160))
  2. result = cv2.resize(src, None, fx=0.5, fy=0.5)

图像缩放:设(x0, y0)是缩放后的坐标,(x, y)是缩放前的坐标,sx、sy为缩放因子,则公式如下:

代码示例如下所示:

#encoding:utf-8
import cv2  
import numpy as np  
 
#读取图片
src = cv2.imread('test.jpg')

#图像缩放
result = cv2.resize(src, (200,100))
print result.shape

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示,图像缩小为(200,100)像素。

需要注意的是,代码中 cv2.resize(src, (200,100)) 设置的dsize是列数为200,行数为100。

同样,可以获取原始图像像素再乘以缩放系数进行图像变换,代码如下所示。

#encoding:utf-8
import cv2  
import numpy as np  
 
#读取图片
src = cv2.imread('test.jpg')
rows, cols = src.shape[:2]
print rows, cols

#图像缩放 dsize(列,行)
result = cv2.resize(src, (int(cols*0.6), int(rows*1.2)))

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示:

最后讲解(fx,fy)缩放倍数的方法对图像进行放大或缩小。

#encoding:utf-8
import cv2  
import numpy as np  
 
#读取图片
src = cv2.imread('test.jpg')
rows, cols = src.shape[:2]
print rows, cols

#图像缩放
result = cv2.resize(src, None, fx=0.3, fy=0.3)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

最后输出的结果如下图所示,这是按例比0.3*0.3缩小的。

二、图像旋转

图像旋转主要调用getRotationMatrix2D()函数和warpAffine()函数实现,绕图像的中心旋转,具体如下:

  • M = cv2.getRotationMatrix2D((cols/2, rows/2), 30, 1)
    参数分别为:旋转中心、旋转度数、scale
  • rotated = cv2.warpAffine(src, M, (cols, rows))
    参数分别为:原始图像、旋转参数、原始图像宽高

图像旋转:设(x0, y0)是旋转后的坐标,(x, y)是旋转前的坐标,(m,n)是旋转中心,a是旋转的角度,(left,top)是旋转后图像的左上角坐标,则公式如下:

代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np  
 
#读取图片
src = cv2.imread('test.jpg')

#原图的高、宽 以及通道数
rows, cols, channel = src.shape

#绕图像的中心旋转
#参数:旋转中心 旋转度数 scale
M = cv2.getRotationMatrix2D((cols/2, rows/2), 30, 1)
#参数:原始图像 旋转参数 元素图像宽高
rotated = cv2.warpAffine(src, M, (cols, rows))

#显示图像
cv2.imshow("src", src)
cv2.imshow("rotated", rotated)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示:

如果设置-90度,则核心代码和图像如下所示。

M = cv2.getRotationMatrix2D((cols/2, rows/2), -90, 1)
rotated = cv2.warpAffine(src, M, (cols, rows))

三、图像翻转

图像翻转在OpenCV中调用函数flip()实现,原型如下:

dst = cv2.flip(src, flipCode)

其中src表示原始图像,flipCode表示翻转方向,如果flipCode为0,则以X轴为对称轴翻转,如果fliipCode>0则以Y轴为对称轴翻转,如果flipCode<0则在X轴、Y轴方向同时翻转。

代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('test.jpg')
src = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#图像翻转
#0以X轴为对称轴翻转 >0以Y轴为对称轴翻转 <0X轴Y轴翻转
img1 = cv2.flip(src, 0)
img2 = cv2.flip(src, 1)
img3 = cv2.flip(src, -1)

#显示图形
titles = ['Source', 'Image1', 'Image2', 'Image3']  
images = [src, img1, img2, img3]  
for i in xrange(4):  
   plt.subplot(2,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

输出结果如下图所示:

四、图像平移

图像平移:设(x0, y0)是缩放后的坐标,(x, y)是缩放前的坐标,dx、dy为偏移量,则公式如下:

图像平移首先定义平移矩阵M,再调用warpAffine()函数实现平移,核心函数如下:

M = np.float32([[1, 0, x], [0, 1, y]])
shifted = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))

完整代码如下所示:

#encoding:utf-8
import cv2  
import numpy as np
import matplotlib.pyplot as plt
 
#读取图片
img = cv2.imread('test.jpg')
image = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

#图像平移 下、上、右、左平移
M = np.float32([[1, 0, 0], [0, 1, 100]])
img1 = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))

M = np.float32([[1, 0, 0], [0, 1, -100]])
img2 = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))

M = np.float32([[1, 0, 100], [0, 1, 0]])
img3 = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))

M = np.float32([[1, 0, -100], [0, 1, 0]])
img4 = cv2.warpAffine(image, M, (image.shape[1], image.shape[0]))

#显示图形
titles = [ 'Image1', 'Image2', 'Image3', 'Image4']  
images = [img1, img2, img3, img4]  
for i in xrange(4):  
   plt.subplot(2,2,i+1), plt.imshow(images[i], 'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  

输出结果如下图所示:

华为伙伴暨开发者大会2022火热来袭,重磅内容不容错过!

【精彩活动】勇往直前·做全能开发者→12场技术直播前瞻,8大技术宝典高能输出,还有代码密室、知识竞赛等多轮神秘任务等你来挑战。即刻闯关,开启终极大奖!点击踏上全能开发者晋级之路吧!

【技术专题】未来已来,2022技术探秘→华为各领域的前沿技术、重磅开源项目、创新的应用实践,站在智能世界的入口,探索未来如何照进现实,干货满满点击了解

 

点击关注,第一时间了解华为云新鲜技术~

展开阅读全文
加载中
点击引领话题📣 发布并加入讨论🔥
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部