文档章节

为什么你需要少看垃圾博客以及如何在Python里精确地四舍五入

o
 osc_w9s1w4o0
发布于 2019/03/31 13:13
字数 2144
阅读 15
收藏 0

精选30+云产品,助力企业轻松上云!>>>

今天又有一个Python初学者被中文技术博客中的垃圾文章给误导了。

这位初学者的问题是:

在Python中,如何精确地进行浮点数的四舍五入,保留两位小数?

如果你在Google或者百度上搜索,你会发现大量的来自CSDN或者简书上面的文章讲到这一点,但是他们的说法无外乎下面几种:

连例子都不举的垃圾文章

如下图所示,懒得吐槽。

使用round函数

他们举的例子为:

>>> round(1.234, 2)
1.23

这种文章,他只演示了四舍,但是却没有演示五入。所以如果你代码稍作修改,就会发现有问题:

>>> round(11.245, 2)
11.24

先放大再缩小

这种文章稍微好一点,知道多举几个例子:

然而这种文章也是漏洞百出,只要你多尝试几个数字就会发现问题,在Python 2和Python 3下面,效果是不一样的。先来看看Python 2下面的运行效果:

在Python 2里面,直接使用round1.125精确到两位小数后为1.13,而1.115精确到两位小数后是1.11

再来看看Python 3下面的效果:

在Python 3下面,1.125在精确到两位小数以后是1.12

他举的例子,在Python 3中先放大再缩小,也并不总是正确。

装逼货

还有一种装逼货,文章和先放大再缩小差不多,但是他还知道decimal这个模块。

不过他的使用方法,大家看他吧

具体原因不详 ????

不推荐使用这个方法???

这种人要先装个逼,表示自己知道有这样一个库,但是用起来发现有问题,而且不知道原因,所以不建议大家使用。

decimal是专门为高精度计算用的模块,他竟然说不建议大家使用???

round到底出了什么问题?

骂完了,我们来说说,在Python 3里面,round这个内置的函数到底有什么问题。

网上有人说,因为在计算机里面,小数是不精确的,例如1.115在计算机中实际上是1.1149999999999999911182,所以当你对这个小数精确到小数点后两位的时候,实际上小数点后第三位是4,所以四舍五入,因此结果为1.11

这种说法,对了一半。

因为并不是所有的小数在计算机中都是不精确的。例如0.125这个小数在计算机中就是精确的,它就是0.125,没有省略后面的值,没有近似,它确确实实就是0.125

但是如果我们在Python中把0.125精确到小数点后两位,那么它的就会变成0.12

>>> round(0.125, 2)
0.12

为什么在这里四舍了?

还有更奇怪的,另一个在计算机里面能够精确表示的小数0.375,我们来看看精确到小数点后两位是多少:

>>> round(0.375, 2)
0.38

为什么这里又五入了?

因为在Python 3里面,round对小数的精确度采用了四舍六入五成双的方式。

如果你写过大学物理的实验报告,那么你应该会记得老师讲过,直接使用四舍五入,最后的结果可能会偏高。所以需要使用奇进偶舍的处理方法。

例如对于一个小数a.bcd,需要精确到小数点后两位,那么就要看小数点后第三位:

  1. 如果d小于5,直接舍去
  2. 如果d大于5,直接进位
  3. 如果d等于5:
    1. d后面没有数据,且c为偶数,那么不进位,保留c
    2. d后面没有数据,且c为奇数,那么进位,c变成(c + 1)
    3. 如果d后面还有非0数字,例如实际上小数为a.bcdef,此时一定要进位,c变成(c + 1)

关于奇进偶舍,有兴趣的同学可以在维基百科搜索这两个词条:数值修约奇进偶舍

所以,round给出的结果如果与你设想的不一样,那么你需要考虑两个原因:

  1. 你的这个小数在计算机中能不能被精确储存?如果不能,那么它可能并没有达到四舍五入的标准,例如1.115,它的小数点后第三位实际上是4,当然会被舍去。
  2. 如果你的这个小数在计算机中能被精确表示,那么,round采用的进位机制是奇进偶舍,所以这取决于你要保留的那一位,它是奇数还是偶数,以及它的下一位后面还有没有数据。

如何正确进行四舍五入

如果要实现我们数学上的四舍五入,那么就需要使用decimal模块。

如何正确使用decimal模块呢?

看官方文档,不要看中文垃圾博客!!!

看官方文档,不要看中文垃圾博客!!!

看官方文档,不要看中文垃圾博客!!!

不要担心看不懂英文,Python已经推出了官方中文文档(有些函数的使用方法还没有翻译完成)。

我们来看一下:https://docs.python.org/zh-cn/3/library/decimal.html#decimal.Decimal.quantize

官方文档给出了具体的写法:

>>>Decimal('1.41421356').quantize(Decimal('1.000'))
Decimal('1.414')

那么我们来测试一下,0.1250.375分别保留两位小数是多少:

>>> from decimal import Decimal
>>> Decimal('0.125').quantize(Decimal('0.00'))
Decimal('0.12')
>>> Decimal('0.375').quantize(Decimal('0.00'))
Decimal('0.38')

怎么结果和round一样?我们来看看文档中quantize的函数原型和文档说明:

这里提到了可以通过指定rounding参数来确定进位方式。如果没有指定rounding参数,那么默认使用上下文提供的进位方式。

现在我们来查看一下默认上下文中的进位方式是什么:

>>> from decimal import getcontext
>>> getcontext().rounding
'ROUND_HALF_EVEN'

如下图所示:

ROUND_HALF_EVEN实际上就是奇进偶舍!如果要指定真正的四舍五入,那么我们需要在quantize中指定进位方式为ROUND_HALF_UP

>>> from decimal import Decimal, ROUND_HALF_UP
>>> Decimal('0.375').quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('0.38')
>>> Decimal('0.125').quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('0.13')

现在看起来一切都正常了。

那么会不会有人进一步追问一下,如果Decimal接收的参数不是字符串,而是浮点数会怎么样呢?

来实验一下:


>>> Decimal(0.375).quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('0.38')
>>> Decimal(0.125).quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('0.13')

那是不是说明,在Decimal的第一个参数,可以直接传浮点数呢?

我们换一个数来测试一下:

>>> Decimal(11.245).quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('11.24')
>>> Decimal('11.245').quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
Decimal('11.25')

为什么浮点数11.245和字符串'11.245',传进去以后,结果不一样?

我们继续在文档在寻找答案。

官方文档已经很清楚地说明了,如果你传入的参数为浮点数,并且这个浮点值在计算机里面不能被精确存储,那么它会先被转换为一个不精确的二进制值,然后再把这个不精确的二进制值转换为等效的十进制值

对于不能精确表示的小数,当你传入的时候,Python在拿到这个数前,这个数就已经被转成了一个不精确的数了。所以你虽然参数传入的是11.245,但是Python拿到的实际上是11.244999999999...

但是如果你传入的是字符串'11.245',那么Python拿到它的时候,就能知道这是11.245,不会提前被转换为一个不精确的值,所以,建议给Decimal的第一个参数传入字符串型的浮点数,而不是直接写浮点数。

总结,如果想实现精确的四舍五入,代码应该这样写:

from decimal import Decimal, ROUND_HALF_UP

origin_num = Decimal('11.245')
answer_num = origin_num.quantize(Decimal('0.00'), rounding=ROUND_HALF_UP)
print(answer_num)

运行效果如下图所示:

特别注意,一旦要做精确计算,那么就不应该再单独使用浮点数,而是应该总是使用Decimal('浮点数')。否则,当你赋值的时候,精度已经被丢失了,建议全程使用Decimal举例:

a = Decimal('0.1')
b = Decimal('0.2')
c = a + b
print(c)

最后,如果有同学想知道为什么0.125和0.375能被精确的储存,而1.115、11.245不能被精确储存,请在这篇文章下面留言,如果想知道的同学多,我就写一篇文章来说明。

o
粉丝 0
博文 500
码字总数 0
作品 0
私信 提问
加载中
请先登录后再评论。
Python 中浮点数四舍五入的问题

问题 昨天遇到一个问题,在 6.6045 保留三位小数时,使用 round() 函数进行计算,我们希望得到 6.605,然而: 网上有人说,因为在计算机里面,小数是不精确的,例如 1.115 在计算机中实际上是...

艺赛旗RPA社区
2019/11/19
21
0
python中的除法,取整和求模

本文为转载,原博客地址:https://blog.csdn.net/huzq1976/article/details/51581330 首先注明:如果没有特别说明,以下内容都是基于python 3.4的。 1. /是精确除法,//是向下取整除法,%是求...

osc_57h7mkgj
01/15
1
0
Python浮点算术:争议和限制

浮点数在计算机硬件中表示为以 2 为基数(二进制)的小数。举例而言,十进制的小数 0.125 等于 1/10 + 2/100 + 5/1000 ,同理,二进制的小数 0.001 等于0/2 + 0/4 + 1/8。这两个小数具有相同...

osc_3uvms8cw
2019/04/16
2
0
Python的垃圾回收机制

一、Garbage collection(GC垃圾回收) 现在的高级语言如java,c#等,都采用了垃圾收集机制,而不再是c,c++里用户自己管理维护内存的方式。自己管理内存极其自由,可以任意申请内存,但如同一...

梦想成大牛
2018/06/28
0
0
使用 Python 计算 π 值

π是一个无数人追随的真正的神奇数字。我不是很清楚一个永远重复的无理数的迷人之处。在我看来,我乐于计算π,也就是计算π的值。因为π是一个无理数,它是无限的。这就意味着任何对π的计算...

renwofei423
2013/06/02
2.2W
21

没有更多内容

加载失败,请刷新页面

加载更多

django框架效率

1. django ORM模式提供食物处理类:transaction.Django默认的事务处理方式时改动就提交,每执行一次就立即提交,这就会花费大量的时间用于IO。Django也支持所有工作都完成后才提交事务这种方...

osc_2clpynvs
8分钟前
0
0
Qt编写安防视频监控系统34-onvif事件订阅

一、前言 事件订阅是近期增加的功能,主要是因为遇到越来越多的一个应用场景,能够接收摄像机的报警事件,比如几乎所有的摄像机后面会增加报警输入输出接口,如果用户外接了报警输入,则当触...

飞扬青云
8分钟前
10
0
springboot应用docker部署调用phantomjs出现permission denied修复方法

1. 最近项目中需要对网页生成图片 通过调研发现 phantomjs 转换保真度最好,兼容性不错。因此选择了它。但是在打包作镜像时发现调用 phantomjs 不成功,进入镜像直接使用命令 phantomjs -v 查...

osc_5emtajt2
9分钟前
0
0
Python 实现 T00ls 自动签到脚本(邮件+钉钉通知)

T00ls 每日签到是可以获取 TuBi 的,由于常常忘记签到,导致损失了很多 TuBi 。于是在 T00ls 论坛搜索了一下,发现有不少大佬都写了自己的签到脚本,签到功能实现、定时任务执行以及签到提醒...

osc_w9jimlm8
10分钟前
6
0
springboot~集成elasticsearch的jest

jest是一批操作es的http api接口,你可以像使用普法方法一下操作es,在springboot2.3.0之前,JestClient是支持自动注入的,而在2.3.0之后,你必须为JestClient写一个组件类,通过注入组件类来...

osc_qo2uprmb
12分钟前
0
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部