文档章节

我用Python爬取了李沧最近一年多的二手房成交数据得出以下结论

o
 osc_w9s1w4o0
发布于 2019/04/02 09:15
字数 1233
阅读 10
收藏 0

精选30+云产品,助力企业轻松上云!>>>

前言

去年年底,博主有购房的意愿,本来是打算在青岛市北购房,怎奈工作变动,意向转移到了李沧,坐等了半年以后,最终选择在红岛附近购置了期房。

也许一些知道青岛红岛的小伙伴会问我,为什么会跑到那鸟不拉屎的地方去买房子,目前只能是一个字:"赌、赌、赌",重要的事情说三遍。下面来分析一下,我为什么没有在李沧买。

爬取数据

爬取了2018年1月份到2019年3月底李沧二手房成交记录,数据仅限于链家,不代表李沧地区的全部数据,但是我觉得应该对大家有一定的参考意义。

创建基本的数据库:

CREATE TABLE `house` (
   `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键',
   `url` varchar(50) NOT NULL COMMENT '网络访问地址',
   `listed_price` double NOT NULL COMMENT '挂牌价格',
   `completion_date` date NOT NULL COMMENT '成交日期',
   `transaction_cycle` int(11) NOT NULL COMMENT '成交周期',
   `modify_price` int(11) NOT NULL COMMENT '调价次数',
   `square_metre` double NOT NULL COMMENT '建筑面积',
   `unit_price` double NOT NULL COMMENT '单价',
   `total_price` double NOT NULL COMMENT '总价',
   `age_completion` int(11) NOT NULL COMMENT '建成年代',
   `community_name` varchar(50) NOT NULL COMMENT '所在小区',
   PRIMARY KEY (`id`)
 ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8

爬取代码:

__author__ = "小柒"
__blog__ = "https://blog.52itstyle.vip/"
import requests
import time
# 导入文件操作库
import os
import re
import bs4
from bs4 import BeautifulSoup
import sys
from util.mysql_DBUtils import mysql


# 写入数据库
def write_db(param):
    try:
        sql = "insert into house (url,listed_price,transaction_cycle,modify_price," \
              "square_metre,unit_price,total_price,age_completion,community_name,completion_date) "
        sql = sql + "VALUES(%(url)s,%(listed_price)s, %(transaction_cycle)s,%(modify_price)s,"
        sql = sql + "%(square_metre)s,%(unit_price)s,%(total_price)s," \
                    "%(age_completion)s,%(community_name)s,%(completion_date)s)"
        mysql.insert(sql, param)
    except Exception as e:
        print(e)


# 主方法
def main():
    # 给请求指定一个请求头来模拟chrome浏览器
    headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 '
                             '(KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36'}
    page_max = 24
    # 爬取地址
    for i in range(1, int(page_max) + 1):
        print("第几页:" + str(i))
        if i == 1:
            house = 'https://qd.lianjia.com/chengjiao/licang/'
        else:
            house = 'https://qd.lianjia.com/chengjiao/licang/pg'+str(i)
        res = requests.get(house, headers=headers)
        soup = BeautifulSoup(res.text, 'html.parser')
        li_max = soup.find('ul', class_='listContent').find_all('li')
        for li in li_max:
            try:
                house_param = {}
                # 所在小区
                community = li.find('div', class_='title').text
                community_name = community.split(" ")[0]
                house_param['community_name'] = community_name
                # 成交地址
                title_src = li.find('a').attrs['href']
                house_param['url'] = title_src
                res = requests.get(title_src, headers=headers)
                soup = BeautifulSoup(res.text, 'html.parser')
                # --------------------------------------------------------#
                # 成交日期
                completion_date = soup.find('div', class_='house-title').find('span').text
                completion_date = completion_date.split(" ")[0]
                completion_date = completion_date.replace(".", "-")
                house_param['completion_date'] = completion_date
                # 挂牌价格
                listed_price = soup.find('div', class_='msg').find_all('span')[0].find('label').text
                house_param['listed_price'] = listed_price
                # 成交周期
                transaction_cycle = soup.find('div', class_='msg').find_all('span')[1].find('label').text
                house_param['transaction_cycle'] = transaction_cycle
                # 调价次数
                modify_price = soup.find('div', class_='msg').find_all('span')[2].find('label').text
                house_param['modify_price'] = modify_price
                # 建筑面积
                square_metre = soup.find('div', class_='content').find("ul").find_all('li')[2].text
                square_metre = re.findall(r'-?\d+\.?\d*e?-?\d*?', square_metre)[0]
                house_param['square_metre'] = square_metre
                # 总价
                total_price = soup.find('span', class_='dealTotalPrice').find('i').text
                house_param['total_price'] = total_price
                # 单价
                unit_price = soup.find('b').text
                house_param['unit_price'] = unit_price
                # 建筑年代
                age_completion = soup.find('div', class_='content').find("ul").find_all('li')[7].text
                age_completion = re.findall(r'-?\d+\.?\d*e?-?\d*?', age_completion)[0]
                house_param['age_completion'] = age_completion
                write_db(house_param)
            except Exception as e:
                print(e)
        mysql.end("commit")
    mysql.dispose()


if __name__ == '__main__':
    main()

通过数据爬取,一共找到了706套二手成交房。

分析数据

直奔主题,数据分析下,大家比较关心的价格问题,以下是2019年1月-3月的二手房成交量以及成交价格:

位置 成交量 单价
李沧 124 21100

同比去年的二手房成交量以及成交价格:

位置 成交量 单价
李沧 277 21306

吓的博主赶紧用计算器认认真真,仔仔细细的核算了三遍,才敢写下这几个数字,同比去年,单价整整降了206人民币,此处有掌声。再看一下成交量,相比去年少了足足一半之多,相信那124套房子也是卖家忍痛降了206人民币才卖出去的吧!

好了,再看一下大家比较关心的成交周期,2019年1月-3月的二手房成交量以及成交周期:

位置 成交量 成交周期(天)
李沧 124 96

同比去年的二手房成交量以及成交周期:

位置 成交量 成交周期(天)
李沧 277 83

不得不说,相比去年房子的确是难卖了。

小结

很多同事,同学,13、14年就已经上车了,那时李沧1w不到,再看看现在?不想看,没眼看,不能看。最终没在李沧买房,也不是买不起,只是看不到降的希望,相对压力又大一些,而且,也不想把家庭所有的积蓄都赌在这里。

最后,对于刚需就是一个建议,买早买,有房和没房看一个城市是不一样的,努力赚钱的最大意义就是提升你的幸福感。活在人间不食人间烟火?真以为自己是神仙?有些东西一说的实际一点真的是会伤到某些人的心,祝你们用键盘战胜一切。

相关代码:https://gitee.com/52itstyle/Python

o
粉丝 0
博文 500
码字总数 0
作品 0
私信 提问
加载中
请先登录后再评论。
上周热点回顾(4.1-4.7)

热点随笔: · 996:只要能活着就好,不管活得多么糟糕(沉默王二) 热点新闻:

osc_gu9d45li
2019/04/08
1
0
我爬了链家青岛市北3000套二手房得出一个结论

前言 青岛的房价这两年翻了一番,举个栗子,如果你在2016年在市区买了100万的房子,2018年价值200万,净增100万;如果你2016年没有买这100万的房子,2018年买房将多付100万,机会成本100万。...

osc_7izxyaq6
2018/11/27
1
0
菜鸟学Python|数据分析精华文章大集合

阅读本文大概需要3分钟 Python的数据分析是我比较喜欢的一个方向,因为可以探索数据里面的秘密,加上可视乎会非常漂亮,但是里面也蕴含着很多技巧的综合,陆陆续续我已经写了好多这样的文章,...

菜鸟学python
2017/12/17
0
0
从爬虫到机器学习预测,我是如何一步一步做到的?

作者:xiaoyu 微信公众号:Python数据科学 知乎:python数据分析师 前情回顾 前一段时间与大家分享了北京二手房房价分析的实战项目,分为分析和建模两篇。文章发出后,得到了大家的肯定和支持...

路远
2018/08/28
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Linux安装redis服务器和部署

Linux安装redis和部署 第一步:下载安装包 wget http://download.redis.io/releases/redis-5.0.5.tar.gz 访问https://redis.io/download 到官网进行下载。这里下载最新的5.0.5版本. 第二步:...

osc_3ytpwpyb
13分钟前
11
0
IF函数,根据条件设定输入内容

if函数通常用于条件判断,根据判断结果执行相应命令。 1.函数解释: IF(logical_test, [value_if_true], [value_if_false]) logical_test 必需。 计算结果为 TRUE 或 FALSE 的任何值或表达式...

osc_sumf8h95
15分钟前
5
0
Pytorch自定义dataloader以及在迭代过程中返回image的name

pytorch官方给的加载数据的方式是已经定义好的dataset以及loader,如何加载自己本地的图片以及label? 形如数据格式为 image1 label1 image2 label2 ... imagen labeln 实验中我采用的数据的...

osc_l8u38961
16分钟前
0
0
灯塔

\[love\ and \ share \] 我怎么感觉变成了好东西推荐呢?算了,本来也差不多 还没写完,想到再更 有好看玩的能不能评论一下,qwq 动漫 大多是些国漫,多在\(b\)站、腾讯视频、盗版小网站能够...

osc_dc6pbw3x
17分钟前
0
0
网易首页 」 网易手机 」 正文 苹果超薄触摸显示技术专利曝光:重新定义轻薄

最近,苹果公司的新屏幕专利技术已经曝光。特别是苹果公司的新型超薄触摸技术,它可以降低显示器的结构水平,消除多余的电路,并使屏幕更薄。该专利表明,这项新技术适用于iPhone,iPad,App...

osc_opzpp18v
19分钟前
0
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部