matplotlib数组转图片的一些坑

2020/01/19 19:59
阅读数 458

最近用matplotlib遇到了一些坑,记录一下。

图片转数组

import matplotlib.pyplot as plt

im_file='test_image.jpg'
img=plt.imread(im_file)
print(img.shape)
print(img.dtype)
# img: numpy array with shape (H,W,c)
# uint8

如上,类型是uint8的。

数组转图片

分为以下情况:3通道和单通道,浮点数组和整形数组。

三通道,浮点数组

三通道的shape是(H,W,C)

对于这种情况,不论原数组取值范围是多少,默认按0-1范围处理,超出范围的直接进行clip操作。也就是小于0的数按0(纯黑色)处理,大于1的按1(纯白)处理。

同时会给出警告:

Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

如果不加cmap='gray'的话,默认显示热度图。

# float array, 3 channels
# For float array with 3 channels, by default the values out of range [0,1] are **Clipped** !
x=np.ones([500,600,3])
x*=0.4
for i in range(100,200):
    x[i]=np.ones([600,3])*9
for i in range(250,300):
    x[i]=np.ones([600,3])*-2
for i in range(370,400):
    x[i]=np.ones([600,3])*0.7
print(x.dtype)
plt.imshow(x)
plt.axis('off')
plt.show()

暂时不贴图了,可以自己试一试效果。

结果应该是灰色背景,从上到下依次是白、黑、浅灰三个横向条带。

如果数组是真实rgb值,建议先归一化到0-1,即x=x/255.

单通道,浮点数组

单通道的shape是二维的(H,W),如果是(H,W,1)会报错。

对于单通道数组,默认进行归一化,即原数组中最大值被映射到1,最小值被映射到0。

# float array, 1 channel
# For float array with 1 channels, by default all values are normalized
x=np.ones([500,600])
x*=100
for i in range(100,200):
    x[i]=np.ones([600])*200
print(x.dtype)
plt.imshow(x,cmap='gray')
plt.axis('off')
plt.show()

结果是黑色背景白色条带。

使用plt.imshow(x,cmap='gray', clim=(0,255)),即将0作为黑色,将255作为白色处理。

三通道,整形

默认会对超出0-255的部分进行clip处理。即小于0视为0(黑色),大于255视为255(白色)。

# int array, 3 channels
x=np.ones([500,600,3])
x*=100
for i in range(100,200):
    x[i]=np.ones([600,3])*900
for i in range(250,300):
    x[i]=np.ones([600,3])*-2
for i in range(370,400):
    x[i]=np.ones([600,3])*200
x=x.astype(np.int64)
print(x.dtype)
plt.imshow(x)
plt.axis('off')
plt.show()

单通道,整形

默认情况下,最小值映射到0(黑色),最大值映射到255(白色)。

# int array, 1 channel
# For int array, by default the array range is mapped to [0,255].
x=np.ones([500,600])
x*=100
for i in range(100,200):
    x[i]=np.ones([600])*175
x=x.astype(np.int64)
print(x)
print(x.dtype)
plt.imshow(x,cmap='gray')
plt.axis('off')
plt.show()

同上,如果数组本身是真实灰度值,使用plt.imshow(x,cmap='gray',clim=[0,255])处理。

总结

matplotlib读取jpg图片时,默认是uint8类型的numpy数组。

在将numpy数组转图片显示时,浮点形默认处理范围是0-1,整形默认处理范围是0-255。

对于三通道数组,超出范围的进行clip处理,对于单通道数组,默认将数组范围线性映射到对应类型的处理范围。

展开阅读全文
打赏
0
0 收藏
分享
加载中
更多评论
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部