一、Benchmark简介
Benchmark是一个评价方式,在整个计算机领域有着长期的应用。正如维基百科上的解释“As computer architecture advanced, it became more difficult to compare the performance of various computer systems simply by looking at their specifications.Therefore, tests were developed that allowed comparison of different architectures.”Benchmark在计算机领域应用最成功的就是性能测试,主要测试负载的执行时间、传输速度、吞吐量、资源占用率等。
性能调优的两大利器是Benchmark和profile工具。Benchmark用压力测试挖掘整个系统的性能状况,而profile工具最大限度地呈现系统的运行状态和性能指标,方便用户诊断性能问题和进行调优。
二、Benchmark的组成
Benchmark的核心由3部分组成:数据集、 工作负载、度量指标。
1、数据集
数据类型分为结构化数据、半结构化数据和非结构化数据。由于大数据环境下的数据类型复杂,负载多样,所以大数据Benchmark需要生成3种类型的数据和对应负载。
1)结构化数据:传统的关系数据模型,可用二维表结构表示。典型场景有电商交易、财务系统、医疗HIS数据库、政务信息化系统等等;
2)半结构化数据:类似XML、HTML之类,自描述,数据结构和内容混杂在一起。典型应用场景有邮件系统、Web搜索引擎存储、教学资源库、档案系统等等,可以考虑使用Hbase等典型的KeyValue存储;
3)非结构化数据:各种文档、图片、视频和音频等。典型的应用有视频网站、图片相册、交通视频监控等等。
2、工作负载
互联网领域数据庞大,用户量大,成为大数据问题产生的天然土壤。对工作负载理解和设计可以从以下几个维度来看
1)密集计算类型:CPU密集型计算、IO密集型计算、网络密集型计算;
2)计算范式:SQL、批处理、流计算、图计算、机器学习;
3)计算延迟:在线计算、离线计算、实时计算;
4)应用领域:搜索引擎、社交网络、电子商务、地理位置、媒体、游戏。
3、度量指标
性能高估的两大利器就是Benchmark和Profile工具。Benchmark用压力测试挖掘整个系统的性能状况,而Profile工具最大限度地呈现系统的运行时状态和性能指标,方便用户诊断性能问题和进行调优。
1)工具的使用
a)在架构层面:perf、nmon等工具和命令;
b)在JVM层面:btrace、Jconsole、JVisualVM、JMap、JStack等工具和命令;
c)在Spark层面:web ui、console log,也可以修改Spark源码打印日志进行性能监控。
2)度量指标
a)从架构角度度量:浮点型操作密度、整数型操作密度、指令中断、cache命中率、TLB命中;
b)从Spark系统执行时间和吞吐的角度度量:Job作业执行时间、Job吞吐量、Stage执行时间、Stage吞吐量、Task执行时间、Task吞吐量;
c)从Spark系统资源利用率的角度度量:CPU在指定时间段的利用率、内存在指定时间段的利用率、磁盘在指定时间段的利用率、网络带宽在指定时间段的利用率;
d)从扩展性的角度度量:数据量扩展、集群节点数据扩展(scale out)、单机性能扩展(scale up)。
三、Benchmark的运用
1、Hibench:由Intel开发的针对Hadoop的基准测试工具,开源的,用户可以到Github库中下载
2、Berkeley BigDataBench:随着Spark的推出,由AMPLab开发的一套大数据基准测试工具,官网介绍
3、Hadoop GridMix:Hadoop自带的Benchmark,作为Hadoop自带的测试工具使用方便、负载经典,应用广泛
4、Bigbench:由Teradata、多伦多大学、InfoSizing、Oracle开发,其设计思想和利用扩展具有研究价值,可以参阅论文Bigbench:Towards an industry standard benchmark for big data analytics。
5、BigDataBenchmark:由中科院研发,官方介绍
6、TPC-DS:广泛应用于SQL on Hadoop的产品评测
7、其他的Benchmark:Malstone、Cloud Harmony、YCSB、SWIM、LinkBench、DFSIO、Hive performance Benchmark(Pavlo)等等
本文转载自:https://www.cnblogs.com/aibabel/p/10950402.html
举报
打赏
0 赞
0 收藏
分享
加载中

其他人还在看
这篇文章我们继续聊分布式相关的内容。 提到分布式系统,就一定绕不开“一致性”,这次我们说说:最终一致性。 最终一致性是现在大部分高可用的分布式系统的核心思路。 估计有人对最终一致性不太熟,先来个简单介...
本文为 #nLive vol.001|美团图数据库平台建设及业务实践# 主题演讲的文字稿,可前往 B站 观看本次视频 大家好,我是来自美团的赵登昌,今天我给大家分享下美团图数据库平台的建设以及业务实践。 这是本次报告的提...
2020年12月,艾瑞咨询发布《DevOps应用发展研究》,对业内企业进行调研,梳理国内DevOps历史脉络、发展现状及展望,内容涵盖DevOps理念解析及行业应用、中国DevOps市场发展状况和中国DevOps应用发展展望。 DevOps...
越努力,越幸运, 本文已收藏在Gitee中JavaCommunity, 里面有面试分享、源码分析系列文章,欢迎收藏,点赞 https://gitee.com/JavaCommunity/JavaCommunity 数据库索引在平时的工作是必备的,怎么建索引,怎么使用...
我是架构精进之路,点击上方“关注”,坚持每天为你分享技术干货,私信我回复“01”,送你一份程序员成长进阶大礼包。 HASH算法介绍 散列函数(英语:Hash function)又称散列算法、哈希函数,是一种从任何一种数...
我是架构精进之路,点击上方“关注”,坚持每天为你分享技术干货,私信我回复“01”,送你一份程序员成长进阶大礼包。 相信大部分人对于团队管理和技术管理在认知上,存在一定隔阂,无形之中会将【管理岗】和【技...
上篇介绍了朴素贝叶斯的原理,本篇来介绍如何用朴素贝叶斯解决实际问题。 朴素贝叶斯最擅长的领域是文本分析,包括: 文本分类 情感分析 垃圾邮件处理 要对文本进行分类,首先要做的是如何提取文本的主要信息,如...
作者 | Liu,Bo 来源|阿里巴巴云原生公众号 前言 常言道,startup 有 startup 的好,大厂有大厂的好,那么大厂究竟好在哪呢?拿硅谷老牌大厂们 FLG 来说,如果要问最令人怀念的是什么?Free food 和基础设施(Infr...
前言 整个Kubernetes技术体系由声明式API以及Controller构成,而kube-apiserver是Kubernetes的声明式api server,并为其它组件交互提供了桥梁。因此加深对kube-apiserver的理解就显得至关重要了。 整体组件功能 ...
JA Plus 故事 程序员的故事如此简单之绕不过去的开源情结 我们准备做一件伟大的事,也可以说是一件真真正正普惠的事。 絮 是的,你没有看错,就是“絮”而非“序”,请允许我絮叨二三。 我们即将要做的,我们认为...
选择专区和圈子:{{title}}
{{o.name}}
{{m.name}}