Pytorch数据可视化:TensorboardX安装及使用(安装测试+实例演示)

04/10 15:39
阅读数 5.9K

数据可视化:TensorboardX安装及使用

tensorboard作为Tensorflow中强大的可视化工具:
https://github.com/tensorflow/tensorboard,已经被广泛使用

但针对其他框架,例如Pytorch,之前一直没有这么好的可视化工具可用,好在目前Pytorch也可以支持Tensorboard了,那就是通过使用tensorboardX,真是Pytorcher的福利!

Github传送门:TensorboardTensorboardX
在这里插入图片描述
可以看到 tensorboardX完美支持了tensorboard常用的function

在这里插入图片描述

下面介绍tensorboardX安装和基本使用方法:

tensorboardX安装:

因为tensorboardX是对tensorboard进行了封装后,开放出来使用,所以必须先安装tensorboard, 再安装tensorboardX
(而如果不需要,可以不安装tensorflow,只是有些功能会受限)

直接使用pip/conda安装:

  1. pip install tensorboard
  2. pip install tensorboardX

在这里插入图片描述

tensorboardX使用:

安装好后,剩下的和tensorboard使用方法基本一致,
先跑一遍example中的实例,

  1. git clone https://github.com/lanpa/tensorboardX.git

在这里插入图片描述
可以看到example 文件夹有很多实例
在这里插入图片描述
运行demo.py:


  1. python demo.py
    在这里插入图片描述

demo.py运行后,会在该目录生成默认的runs文件夹,里面存储了Demo程序写入的log文件(通过pytorch),这样就可以通过tensorboard对这些数据可视化了:

在这里插入图片描述

  1. tensorboard --logdir runs

和往常一样启动tensorboard,web组件会在localhost搭建一个Port默认为6006

在这里插入图片描述

这时候打开浏览器(最好用chrome)进入http://localhost:6006/ ,就可以查看数据,还是熟悉的操作:

查看scalars:
在这里插入图片描述
images:
在这里插入图片描述
projector:
在这里插入图片描述
distributions:
在这里插入图片描述
Histograms:
在这里插入图片描述
pr curves:
在这里插入图片描述
etc… 具体tensorboard各项功能和使用可以查看tensorboard官方教程:
https://tensorflow.google.cn/tensorboard/get_started












其中demo.py如下,可以看到代码上tensorboardX使用方法和tensorboard基本一致,tensorboardX通过SummaryWriter 类操作log data(也只有这一个类),并且通过add_xxxx记录各类data(如图表、直方图、图片,标量等等),(对应tensorflow1.0之后版本改成了tensorflow.summary.FileWriter, add_xxxx)

# demo.py

import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter

resnet18 = models.resnet18(False)
writer = SummaryWriter()
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]

for n_iter in range(100):

    dummy_s1 = torch.rand(1)
    dummy_s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
    writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)

    writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
                                             'xcosx': n_iter * np.cos(n_iter),
                                             'arctanx': np.arctan(n_iter)}, n_iter)

    dummy_img = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
        writer.add_image('Image', x, n_iter)

        dummy_audio = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # amplitude of sound should in [-1, 1]
            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
        writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)

        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)

        for name, param in resnet18.named_parameters():
            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)

        # needs tensorboard 0.4RC or later
        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)

dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]

features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))

# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()
发布了60 篇原创文章 · 获赞 238 · 访问量 35万+
展开阅读全文
打赏
0
0 收藏
分享
加载中
更多评论
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部