文档章节

数仓1.3 |行为数据| 业务数据需求

o
 osc_fmg49rzg
发布于 2019/03/20 22:31
字数 7844
阅读 93
收藏 0

精选30+云产品,助力企业轻松上云!>>>

 只要是insert into 的就是没分区

 需求一:用户活跃主题

DWS层--(用户行为宽表层)

目标:统计当日、当周、当月活动的每个设备明细

1 每日活跃设备明细 dwd_start_log--->dws_uv_detail_day

--把相同的字段collect_set到一个数组, 按mid_id分组(便于后边统计)

 collect_set将某字段的值进行去重汇总,产生array类型字段。如: concat_ws('|', collect_set(user_id)) user_id,

建分区表dws_uv_detail_day partitioned by ('dt' string)

drop table if exists dws_uv_detail_day;
create table dws_uv_detail_day( 
    `mid_id` string COMMENT '设备唯一标识',
    `user_id` string COMMENT '用户标识', 
    `version_code` string COMMENT '程序版本号', 
    `version_name` string COMMENT '程序版本名', 
`lang` string COMMENT '系统语言', 
`source` string COMMENT '渠道号', 
`os` string COMMENT '安卓系统版本', 
`area` string COMMENT '区域', 
`model` string COMMENT '手机型号', 
`brand` string COMMENT '手机品牌', 
`sdk_version` string COMMENT 'sdkVersion', 
`gmail` string COMMENT 'gmail', 
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度'
) COMMENT '活跃用户按天明细'
PARTITIONED BY ( `dt` string)
stored as  parquet
location '/warehouse/gmall/dws/dws_uv_detail_day/'
;
View Code

数据导入  

按周分区;过滤出一周内的数据;按设备id分组; ===>count(*)得到最终结果;

partition(dt='2019-02-10')   from dwd_start_log  where dt='2019-02-10'  group by mid_id  ( mid_id设备唯一标示 )

以用户单日访问为key进行聚合,如果某个用户在一天中使用了两种操作系统、两个系统版本、多个地区,登录不同账号,只取其中之一

hive (gmall)>
set hive.exec.dynamic.partition.mode=nonstrict;

insert overwrite table dws_uv_detail_day  partition(dt='2019-02-10')
select  
    mid_id,
    concat_ws('|', collect_set(user_id)) user_id,
    concat_ws('|', collect_set(version_code)) version_code,
    concat_ws('|', collect_set(version_name)) version_name,
    concat_ws('|', collect_set(lang))lang,
    concat_ws('|', collect_set(source)) source,
    concat_ws('|', collect_set(os)) os,
    concat_ws('|', collect_set(area)) area, 
    concat_ws('|', collect_set(model)) model,
    concat_ws('|', collect_set(brand)) brand,
    concat_ws('|', collect_set(sdk_version)) sdk_version,
    concat_ws('|', collect_set(gmail)) gmail,
    concat_ws('|', collect_set(height_width)) height_width,
    concat_ws('|', collect_set(app_time)) app_time,
    concat_ws('|', collect_set(network)) network,
    concat_ws('|', collect_set(lng)) lng,
    concat_ws('|', collect_set(lat)) lat
from dwd_start_log
where dt='2019-02-10'  
group by mid_id;
View Code

查询导入结果;

hive (gmall)> select * from dws_uv_detail_day limit 1;

###最后count(*)即是每日活跃设备的个数; hive (gmall)
> select count(*) from dws_uv_detail_day;

2 每周(dws_uv_detail_wk)活跃设备明细  partition(wk_dt)

周一到周日concat(date_add(next_day('2019-02-10', 'MO'), -7), '_', date_add(next_day('2019-02-10', 'MO'), -1))即 2019-02-04_2019-02-10 

创建分区表: partitioned by('wk_dt' string) 

hive (gmall)>
drop table if exists dws_uv_detail_wk;

create table dws_uv_detail_wk( 
    `mid_id` string COMMENT '设备唯一标识',
    `user_id` string COMMENT '用户标识', 
    `version_code` string COMMENT '程序版本号', 
    `version_name` string COMMENT '程序版本名', 
`lang` string COMMENT '系统语言', 
`source` string COMMENT '渠道号', 
`os` string COMMENT '安卓系统版本', 
`area` string COMMENT '区域', 
`model` string COMMENT '手机型号', 
`brand` string COMMENT '手机品牌', 
`sdk_version` string COMMENT 'sdkVersion', 
`gmail` string COMMENT 'gmail', 
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
    `monday_date` string COMMENT '周一日期',
    `sunday_date` string COMMENT  '周日日期' 
) COMMENT '活跃用户按周明细'
PARTITIONED BY (`wk_dt` string)
stored as  parquet
location '/warehouse/gmall/dws/dws_uv_detail_wk/'
;
View Code

导入数据:以周为分区;过滤出一个月内的数据,按设备id分组;

周一: date_add(next_day('2019-05-16','MO'),-7);

周日:date_add(next_day('2019-05-16','MO'),-1);

周一---周日:concat(date_add(next_day('2019-05-16', 'MO'), -7), "_", date_add(next_day('2019-05-16', 'MO'), -1));

insert overwrite table dws_uv_detail_wk partition(wk_dt)
select mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang)) lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area, 
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
date_add(next_day('2019-02-10', 'MO'), -7),
date_add(next_day('2019-02-10', 'MO'), -1),
concat(date_add(next_day('2019-02-10', 'MO'), -7), '_', date_add(next_day('2019-02-10', 'MO'), -1))
from dws_uv_detail_day
where dt >= date_add(next_day('2019-02-10', 'MO'), -7) and dt <= date_add(next_day('2019-02-10', 'MO'), -1)
group by mid_id;
 
View Code

 

查询导入结果

hive (gmall)> select * from dws_uv_detail_wk limit 1;
hive (gmall)> select count(*) from dws_uv_detail_wk;

3 每月活跃设备明细 dws_uv_detail_mn   partition(mn) - 把每日的数据插入进去 

DWS层创建分区表 partitioned by(mn string) 

hive (gmall)>
drop table if exists dws_uv_detail_mn;

create  external table dws_uv_detail_mn( 
    `mid_id` string COMMENT '设备唯一标识',
    `user_id` string COMMENT '用户标识', 
    `version_code` string COMMENT '程序版本号', 
    `version_name` string COMMENT '程序版本名', 
`lang` string COMMENT '系统语言', 
`source` string COMMENT '渠道号', 
`os` string COMMENT '安卓系统版本', 
`area` string COMMENT '区域', 
`model` string COMMENT '手机型号', 
`brand` string COMMENT '手机品牌', 
`sdk_version` string COMMENT 'sdkVersion', 
`gmail` string COMMENT 'gmail', 
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度'
) COMMENT '活跃用户按月明细'
PARTITIONED BY (`mn` string)
stored as  parquet
location '/warehouse/gmall/dws/dws_uv_detail_mn/'
;
View Code

数据导入 按月分区;过滤出一个月内的数据,按照设备id分组;

data_format('2019-03-10', 'yyyy-MM')  ---> 2019-03

where date_format('dt', 'yyyy-MM') = date_format('2019-02-10', 'yyyy-MM')  group by mid_id;

hive (gmall)>
set hive.exec.dynamic.partition.mode=nonstrict;

insert  overwrite table dws_uv_detail_mn  partition(mn)
select  
    mid_id,
    concat_ws('|', collect_set(user_id)) user_id,
    concat_ws('|', collect_set(version_code)) version_code,
    concat_ws('|', collect_set(version_name)) version_name,
    concat_ws('|', collect_set(lang)) lang,
    concat_ws('|', collect_set(source)) source,
    concat_ws('|', collect_set(os)) os,
    concat_ws('|', collect_set(area)) area, 
    concat_ws('|', collect_set(model)) model,
    concat_ws('|', collect_set(brand)) brand,
    concat_ws('|', collect_set(sdk_version)) sdk_version,
    concat_ws('|', collect_set(gmail)) gmail,
    concat_ws('|', collect_set(height_width)) height_width,
    concat_ws('|', collect_set(app_time)) app_time,
    concat_ws('|', collect_set(network)) network,
    concat_ws('|', collect_set(lng)) lng,
    concat_ws('|', collect_set(lat)) lat,
    date_format('2019-02-10','yyyy-MM')
from dws_uv_detail_day
where date_format(dt,'yyyy-MM') = date_format('2019-02-10','yyyy-MM')   
group by mid_id;
View Code

查询导入结果

hive (gmall)> select * from dws_uv_detail_mn limit 1;
hive (gmall)> select count(*) from dws_uv_detail_mn ;

DWS层加载数据脚本

在hadoop101的/home/kris/bin目录下创建脚本

[kris@hadoop101 bin]$ vim dws.sh

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else 
    do_date=`date -d "-1 day" +%F`  
fi 


sql="
  set hive.exec.dynamic.partition.mode=nonstrict;

  insert overwrite table "$APP".dws_uv_detail_day partition(dt='$do_date')
  select  
    mid_id,
    concat_ws('|', collect_set(user_id)) user_id,
    concat_ws('|', collect_set(version_code)) version_code,
    concat_ws('|', collect_set(version_name)) version_name,
    concat_ws('|', collect_set(lang)) lang,
    concat_ws('|', collect_set(source)) source,
    concat_ws('|', collect_set(os)) os,
    concat_ws('|', collect_set(area)) area, 
    concat_ws('|', collect_set(model)) model,
    concat_ws('|', collect_set(brand)) brand,
    concat_ws('|', collect_set(sdk_version)) sdk_version,
    concat_ws('|', collect_set(gmail)) gmail,
    concat_ws('|', collect_set(height_width)) height_width,
    concat_ws('|', collect_set(app_time)) app_time,
    concat_ws('|', collect_set(network)) network,
    concat_ws('|', collect_set(lng)) lng,
    concat_ws('|', collect_set(lat)) lat
  from "$APP".dwd_start_log
  where dt='$do_date'  
  group by mid_id;


  insert  overwrite table "$APP".dws_uv_detail_wk partition(wk_dt)
  select  
    mid_id,
    concat_ws('|', collect_set(user_id)) user_id,
    concat_ws('|', collect_set(version_code)) version_code,
    concat_ws('|', collect_set(version_name)) version_name,
    concat_ws('|', collect_set(lang)) lang,
    concat_ws('|', collect_set(source)) source,
    concat_ws('|', collect_set(os)) os,
    concat_ws('|', collect_set(area)) area, 
    concat_ws('|', collect_set(model)) model,
    concat_ws('|', collect_set(brand)) brand,
    concat_ws('|', collect_set(sdk_version)) sdk_version,
    concat_ws('|', collect_set(gmail)) gmail,
    concat_ws('|', collect_set(height_width)) height_width,
    concat_ws('|', collect_set(app_time)) app_time,
    concat_ws('|', collect_set(network)) network,
    concat_ws('|', collect_set(lng)) lng,
    concat_ws('|', collect_set(lat)) lat,
    date_add(next_day('$do_date','MO'),-7),
    date_add(next_day('$do_date','SU'),-7),
    concat(date_add( next_day('$do_date','MO'),-7), '_' , date_add(next_day('$do_date','MO'),-1) 
  )
  from "$APP".dws_uv_detail_day 
  where dt>=date_add(next_day('$do_date','MO'),-7) and dt<=date_add(next_day('$do_date','MO'),-1) 
  group by mid_id; 


  insert overwrite table "$APP".dws_uv_detail_mn partition(mn)
  select  
    mid_id,
    concat_ws('|', collect_set(user_id)) user_id,
    concat_ws('|', collect_set(version_code)) version_code,
    concat_ws('|', collect_set(version_name)) version_name,
    concat_ws('|', collect_set(lang))lang,
    concat_ws('|', collect_set(source)) source,
    concat_ws('|', collect_set(os)) os,
    concat_ws('|', collect_set(area)) area, 
    concat_ws('|', collect_set(model)) model,
    concat_ws('|', collect_set(brand)) brand,
    concat_ws('|', collect_set(sdk_version)) sdk_version,
    concat_ws('|', collect_set(gmail)) gmail,
    concat_ws('|', collect_set(height_width)) height_width,
    concat_ws('|', collect_set(app_time)) app_time,
    concat_ws('|', collect_set(network)) network,
    concat_ws('|', collect_set(lng)) lng,
    concat_ws('|', collect_set(lat)) lat,
    date_format('$do_date','yyyy-MM')
  from "$APP".dws_uv_detail_day
  where date_format(dt,'yyyy-MM') = date_format('$do_date','yyyy-MM')   
  group by mid_id;
"

$hive -e "$sql"
View Code

增加脚本执行权限 chmod 777 dws.sh

脚本使用[kris@hadoop101 module]$ dws.sh 2019-02-11

查询结果

hive (gmall)> select count(*) from dws_uv_detail_day;
hive (gmall)> select count(*) from dws_uv_detail_wk;
hive (gmall)> select count(*) from dws_uv_detail_mn ;

脚本执行时间;企业开发中一般在每日凌晨30分~1点

  ADS层 目标:当日、当周、当月活跃设备数    使用 day_count表 join wk_count  join mn_count , 把3张表连接一起

建表ads_uv_count表:

字段有day_count、wk_count、mn_count
is_weekend if(date_add(next_day('2019-02-10', 'MO'), -1) = '2019-02-10', 'Y', 'N')
is_monthend if(last_day('2019-02-10') = '2019-02-10', 'Y', 'N')

drop table if exists ads_uv_count;
create external table ads_uv_count(
`dt` string comment '统计日期',
`day_count` bigint comment '当日用户量',
`wk_count` bigint comment '当周用户量',
`mn_count` bigint comment '当月用户量',
`is_weekend` string comment 'Y,N是否是周末,用于得到本周最终结果',
`is_monthend` string comment 'Y,N是否是月末,用于得到本月最终结果'
) comment '每日活跃用户数量'
stored as parquet
location '/warehouse/gmall/ads/ads_uv_count/';
View Code

导入数据:

hive (gmall)>
insert  overwrite table ads_uv_count 
select  
  '2019-02-10' dt,
   daycount.ct,
   wkcount.ct,
   mncount.ct,
   if(date_add(next_day('2019-02-10','MO'),-1)='2019-02-10','Y','N') ,
   if(last_day('2019-02-10')='2019-02-10','Y','N') 
from 
(
   select  
      '2019-02-10' dt,
       count(*) ct
   from dws_uv_detail_day
   where dt='2019-02-10'  
)daycount   join 
( 
   select  
     '2019-02-10' dt,
     count (*) ct
   from dws_uv_detail_wk
   where wk_dt=concat(date_add(next_day('2019-02-10','MO'),-7),'_' ,date_add(next_day('2019-02-10','MO'),-1) )
)  wkcount  on daycount.dt=wkcount.dt
join 
( 
   select  
     '2019-02-10' dt,
     count (*) ct
   from dws_uv_detail_mn
   where mn=date_format('2019-02-10','yyyy-MM')  
)mncount on daycount.dt=mncount.dt
;
View Code

查询导入结果

  hive (gmall)> select * from ads_uv_count ;

 ADS层加载数据脚本

1)在hadoop101的/home/kris/bin目录下创建脚本

[kris@hadoop101 bin]$ vim ads.sh

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else 
    do_date=`date -d "-1 day" +%F`  
fi 

sql="
  set hive.exec.dynamic.partition.mode=nonstrict;

insert into table "$APP".ads_uv_count 
select  
  '$do_date' dt,
   daycount.ct,
   wkcount.ct,
   mncount.ct,
   if(date_add(next_day('$do_date','MO'),-1)='$do_date','Y','N') ,
   if(last_day('$do_date')='$do_date','Y','N') 
from 
(
   select  
      '$do_date' dt,
       count(*) ct
   from "$APP".dws_uv_detail_day
   where dt='$do_date'  
)daycount   join 
( 
   select  
     '$do_date' dt,
     count (*) ct
   from "$APP".dws_uv_detail_wk
   where wk_dt=concat(date_add(next_day('$do_date','MO'),-7),'_' ,date_add(next_day('$do_date','MO'),-1) )
)  wkcount  on daycount.dt=wkcount.dt
join 
( 
   select  
     '$do_date' dt,
     count (*) ct
   from "$APP".dws_uv_detail_mn
   where mn=date_format('$do_date','yyyy-MM')  
)mncount on daycount.dt=mncount.dt;
"

$hive -e "$sql"
View Code

增加脚本执行权限 chmod 777 ads.sh

脚本使用 ads.sh 2019-02-11

查询导入结果 hive (gmall)> select * from ads_uv_count ;

需求二:用户新增主题

首次联网使用应用的用户。如果一个用户首次打开某APP,那这个用户定义为新增用户;卸载再安装的设备,不会被算作一次新增。新增用户包括日新增用户、周新增用户、月新增用户。

每日新增(老用户不算,之前没登陆过,今天是第一次登陆)设备--没有分区
-->以往的新增库里边没有他,但他今天活跃了即新增加的用户;

1 DWS层(每日新增设备明细表)

创建每日新增设备明细表:dws_new_mid_day 

hive (gmall)>
drop table if exists  dws_new_mid_day;
create  table  dws_new_mid_day
(
    `mid_id` string COMMENT '设备唯一标识',
    `user_id` string COMMENT '用户标识', 
    `version_code` string COMMENT '程序版本号', 
    `version_name` string COMMENT '程序版本名', 
`lang` string COMMENT '系统语言', 
`source` string COMMENT '渠道号', 
`os` string COMMENT '安卓系统版本', 
`area` string COMMENT '区域', 
`model` string COMMENT '手机型号', 
`brand` string COMMENT '手机品牌', 
`sdk_version` string COMMENT 'sdkVersion', 
`gmail` string COMMENT 'gmail', 
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
    `create_date`  string  comment '创建时间' 
)  COMMENT '每日新增设备信息'
stored as  parquet
location '/warehouse/gmall/dws/dws_new_mid_day/';
View Code

             

dws_uv_detail_day(每日活跃设备明细) left join dws_new_mid_day nm(以往的新增用户表, 新建字段create_time2019-02-10) nm.mid_id is null;

导入数据

每日活跃用户表 left join 每日新增设备表,关联的条件是mid_id相等。如果是每日新增的设备,则在每日新增设备表中为null。

  from dws_uv_detail_day ud left join dws_new_mid_day nm on ud.mid_id=nm.mid_id

  where ud.dt='2019-02-10' and nm.mid_id is null;

hive (gmall)>
insert into table dws_new_mid_day  
select  
    ud.mid_id,
    ud.user_id , 
    ud.version_code , 
    ud.version_name , 
    ud.lang , 
    ud.source, 
    ud.os, 
    ud.area, 
    ud.model, 
    ud.brand, 
    ud.sdk_version, 
    ud.gmail, 
    ud.height_width,
    ud.app_time,
    ud.network,
    ud.lng,
    ud.lat,
    '2019-02-10'
from dws_uv_detail_day ud left join dws_new_mid_day nm on ud.mid_id=nm.mid_id
where ud.dt='2019-02-10' and nm.mid_id is null;
View Code

查询导入数据

hive (gmall)> select count(*) from dws_new_mid_day ;

2 ADS层(每日新增设备表)

创建每日新增设备表ads_new_mid_count 

hive (gmall)>
drop table if exists  `ads_new_mid_count`;
create  table  `ads_new_mid_count`
(
    `create_date`     string  comment '创建时间' ,
    `new_mid_count`   BIGINT comment '新增设备数量' 
)  COMMENT '每日新增设备信息数量'
row format delimited  fields terminated by '\t' 
location '/warehouse/gmall/ads/ads_new_mid_count/';
View Code

导入数据   count(*) dws_new_mid_day表即可

加了create_date就必须group by create_time否则报错:not in GROUP BY key 'create_date'

hive (gmall)>
insert into table ads_new_mid_count 
select create_date , count(*)  from dws_new_mid_day
where create_date='2019-02-10'
group by create_date ;

查询导入数据

hive (gmall)> select * from ads_new_mid_count;

 

扩展每月新增:

--每月新增
drop table if exists dws_new_mid_mn;
create table dws_new_mid_mn(
    `mid_id` string COMMENT '设备唯一标识',
    `user_id` string COMMENT '用户标识', 
    `version_code` string COMMENT '程序版本号', 
    `version_name` string COMMENT '程序版本名', 
    `lang` string COMMENT '系统语言', 
    `source` string COMMENT '渠道号', 
    `os` string COMMENT '安卓系统版本', 
    `area` string COMMENT '区域', 
    `model` string COMMENT '手机型号', 
    `brand` string COMMENT '手机品牌', 
    `sdk_version` string COMMENT 'sdkVersion', 
    `gmail` string COMMENT 'gmail', 
    `height_width` string COMMENT '屏幕宽高',
    `app_time` string COMMENT '客户端日志产生时的时间',
    `network` string COMMENT '网络模式',
    `lng` string COMMENT '经度',
    `lat` string COMMENT '纬度'
)comment "每月新增明细"
partitioned by(mn string)
stored as parquet
location "/warehouse/gmall/dws/dws_new_mid_mn";

insert overwrite table dws_new_mid_mn partition(mn)
select
    um.mid_id,
    um.user_id , 
    um.version_code , 
    um.version_name , 
    um.lang , 
    um.source, 
    um.os, 
    um.area, 
    um.model, 
    um.brand, 
    um.sdk_version, 
    um.gmail, 
    um.height_width,
    um.app_time,
    um.network,
    um.lng,
    um.lat,
    date_format('2019-02-10', 'yyyy-MM')
from dws_uv_detail_mn um left join dws_new_mid_mn nm on um.mid_id = nm.mid_id
where um.mn =date_format('2019-02-10', 'yyyy-MM') and nm.mid_id = null; ----为什么加上它就是空的??查不到数据了呢
--##注意这里不能写出date_format(um.mn, 'yyyy-MM') =date_format('2019-02-10', 'yyyy-MM') 
    |
View Code

 

需求三:用户留存主题

                   

如果不考虑2019-02-11和2019-02-12的新增用户:2019-02-10新增100人,一天后它的留存率是30%,2天12号它的留存率是25%,3天后留存率32%;

  站在2019-02-12号看02-11的留存率:新增200人,12号的留存率是20%;

  站在2019-02-13号看02-12的留存率:新增100人,13号即一天后留存率是25%;

用户留存率的分析: 昨日的新增且今天是活跃的 /  昨日的新增用户量

                  

如今天11日,要统计10日的 用户留存率---->10日的新设备且是11日活跃的 / 10日新增设备
  分母:10日的新增设备(每日活跃 left join 以往新增设备表(nm)  nm.mid_id is null )
  分子:每日活跃表(ud) join 每日新增表(nm) where ud.dt='今天' and nm.create_date = '昨天'

① DWS层(每日留存用户明细表dws_user_retention_day)

用户1天留存的分析: ===>>

  留存用户=前一天新增 join 今天活跃

       用户留存率=留存用户/前一天新增

创建表: dws_user_retention_day

hive (gmall)>
drop table if exists  `dws_user_retention_day`;
create  table  `dws_user_retention_day` 
(
    `mid_id` string COMMENT '设备唯一标识',
    `user_id` string COMMENT '用户标识', 
    `version_code` string COMMENT '程序版本号', 
    `version_name` string COMMENT '程序版本名', 
`lang` string COMMENT '系统语言', 
`source` string COMMENT '渠道号', 
`os` string COMMENT '安卓系统版本', 
`area` string COMMENT '区域', 
`model` string COMMENT '手机型号', 
`brand` string COMMENT '手机品牌', 
`sdk_version` string COMMENT 'sdkVersion', 
`gmail` string COMMENT 'gmail', 
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
   `create_date`       string  comment '设备新增时间',
   `retention_day`     int comment '截止当前日期留存天数'
)  COMMENT '每日用户留存情况'
PARTITIONED BY ( `dt` string)
stored as  parquet
location '/warehouse/gmall/dws/dws_user_retention_day/'
;
View Code

导入数据(每天计算前1天的新用户访问留存明细)

  from  dws_uv_detail_day每日活跃设备 ud join dws_new_mid_day每日新增设备 nm   on ud.mid_id =nm.mid_id

    where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-1);

hive (gmall)>
insert  overwrite table dws_user_retention_day  partition(dt="2019-02-11")
select  
    nm.mid_id,
    nm.user_id , 
    nm.version_code , 
    nm.version_name , 
    nm.lang , 
    nm.source, 
    nm.os, 
    nm.area, 
    nm.model, 
    nm.brand, 
    nm.sdk_version, 
    nm.gmail, 
    nm.height_width,
    nm.app_time,
    nm.network,
    nm.lng,
    nm.lat,
nm.create_date,
1 retention_day 
from  dws_uv_detail_day ud join dws_new_mid_day nm   on ud.mid_id =nm.mid_id 
where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-1);
View Code

查询导入数据(每天计算前1天的新用户访问留存明细)

hive (gmall)> select count(*) from dws_user_retention_day;

② DWS层(1,2,3,n天留存用户明细表)直接插入数据: dws_user_retention_day 用union all连接起来,汇总到一个表中;

   1)直接导入数据(每天计算前1,2,3,n天的新用户访问留存明细)

        直接改变这个即可以,date_add('2019-02-11',-3);  -1是一天的留存率; -2是两天的留存率、-3是三天的留存率

hive (gmall)>
insert  overwrite table dws_user_retention_day  partition(dt="2019-02-11")
select  
    nm.mid_id,
    nm.user_id , 
    nm.version_code , 
    nm.version_name , 
    nm.lang , 
    nm.source, 
    nm.os, 
    nm.area, 
    nm.model, 
    nm.brand, 
    nm.sdk_version, 
    nm.gmail, 
    nm.height_width,
    nm.app_time,
    nm.network,
    nm.lng,
    nm.lat,
    nm.create_date,
    1 retention_day 
from dws_uv_detail_day ud join dws_new_mid_day nm  on ud.mid_id =nm.mid_id 
where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-1)

union all
select  
    nm.mid_id,
    nm.user_id , 
    nm.version_code , 
    nm.version_name , 
    nm.lang , 
    nm.source, 
    nm.os, 
    nm.area, 
    nm.model, 
    nm.brand, 
    nm.sdk_version, 
    nm.gmail, 
    nm.height_width,
    nm.app_time,
    nm.network,
    nm.lng,
    nm.lat,
    nm.create_date,
    2 retention_day 
from  dws_uv_detail_day ud join dws_new_mid_day nm   on ud.mid_id =nm.mid_id 
where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-2)

union all
select  
    nm.mid_id,
    nm.user_id , 
    nm.version_code , 
    nm.version_name , 
    nm.lang , 
    nm.source, 
    nm.os, 
    nm.area, 
    nm.model, 
    nm.brand, 
    nm.sdk_version, 
    nm.gmail, 
    nm.height_width,
    nm.app_time,
    nm.network,
    nm.lng,
    nm.lat,
    nm.create_date,
    3 retention_day 
from  dws_uv_detail_day ud join dws_new_mid_day nm   on ud.mid_id =nm.mid_id 
where ud.dt='2019-02-11' and nm.create_date=date_add('2019-02-11',-3);
View Code

    2)查询导入数据(每天计算前1,2,3天的新用户访问留存明细)

hive (gmall)> select retention_day , count(*) from dws_user_retention_day group by retention_day;

③  ADS层  留存用户数  ads_user_retention_day_count 直接count( * )即可 

     1)创建 ads_user_retention_day_count表:

hive (gmall)>
drop table if exists  `ads_user_retention_day_count`;
create  table  `ads_user_retention_day_count` 
(
   `create_date`       string  comment '设备新增日期',
   `retention_day`     int comment '截止当前日期留存天数',
   `retention_count`    bigint comment  '留存数量'
)  COMMENT '每日用户留存情况'
stored as  parquet
location '/warehouse/gmall/ads/ads_user_retention_day_count/';

  导入数据 按创建日期create_date 和 留存天数retention_day进行分组group by;

hive (gmall)>
insert into table ads_user_retention_day_count 
select   
    create_date, 
    retention_day, 
    count(*) retention_count  
from dws_user_retention_day
where dt='2019-02-11' 
group by create_date,retention_day;

  查询导入数据

    hive (gmall)> select * from ads_user_retention_day_count;

    --->  2019-02-10      1       112

④ 留存用户比率  retention_count / new_mid_count 即留存个数 / 新增个数

    创建表 ads_user_retention_day_rate

hive (gmall)>
drop table if exists  `ads_user_retention_day_rate`;
create  table  `ads_user_retention_day_rate` 
(
     `stat_date`          string comment '统计日期',
     `create_date`       string  comment '设备新增日期',
     `retention_day`     int comment '截止当前日期留存天数',
     `retention_count`    bigint comment  '留存数量',
     `new_mid_count`     string  comment '当日设备新增数量',
     `retention_ratio`   decimal(10,2) comment '留存率'
)  COMMENT '每日用户留存情况'
stored as  parquet
location '/warehouse/gmall/ads/ads_user_retention_day_rate/';
View Code

   导入数据

    join ads_new_mid_countt --->每日新增设备表

hive (gmall)>
insert into table ads_user_retention_day_rate
select 
    '2019-02-11' , 
    ur.create_date,
    ur.retention_day, 
    ur.retention_count , 
    nc.new_mid_count,
    ur.retention_count/nc.new_mid_count*100
from 
(
    select   
        create_date, 
        retention_day, 
        count(*) retention_count  
    from `dws_user_retention_day` 
    where dt='2019-02-11' 
    group by create_date,retention_day
)  ur join ads_new_mid_count nc on nc.create_date=ur.create_date;
View Code

   查询导入数据

    hive (gmall)>select * from ads_user_retention_day_rate;

     2019-02-11      2019-02-10      1       112     442     25.34

 

需求四:沉默用户数

沉默用户:指的是只在安装当天启动过,且启动时间是在一周前

使用日活明细表dws_uv_detail_day作为DWS层数据

                    

建表语句

hive (gmall)>
drop table if exists ads_slient_count;
create external table ads_slient_count( 
    `dt` string COMMENT '统计日期',
    `slient_count` bigint COMMENT '沉默设备数'
) 
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_slient_count';
View Code

导入数据

hive (gmall)>
insert into table ads_slient_count
select 
    '2019-02-20' dt,
    count(*) slient_count
from 
(
    select mid_id
    from dws_uv_detail_day
    where dt<='2019-02-20'
    group by mid_id
    having count(*)=1 and min(dt)<date_add('2019-02-20',-7)
) t1;
View Code

需求五:本周回流用户数

本周回流=本周活跃-本周新增-上周活跃

使用日活明细表dws_uv_detail_day作为DWS层数据

本周回流(上周以前活跃过,上周没活跃,本周活跃了)=本周活跃-本周新增-上周活跃
本周回流=本周活跃left join 本周新增 left join 上周活跃,且本周新增id为null,上周活跃id为null;

建表:

hive (gmall)>
drop table if exists ads_back_count;
create external table ads_back_count( 
    `dt` string COMMENT '统计日期',
    `wk_dt` string COMMENT '统计日期所在周',
    `wastage_count` bigint COMMENT '回流设备数'
) 
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_back_count';
View Code

导入数据

hive (gmall)> 
insert into table ads_back_count
select 
   '2019-02-20' dt,
   concat(date_add(next_day('2019-02-20','MO'),-7),'_',date_add(next_day('2019-02-20','MO'),-1)) wk_dt,
   count(*)
from 
(
    select t1.mid_id
    from 
    (
        select    mid_id
        from dws_uv_detail_wk
        where wk_dt=concat(date_add(next_day('2019-02-20','MO'),-7),'_',date_add(next_day('2019-02-20','MO'),-1))
    )t1
    left join
    (
        select mid_id
        from dws_new_mid_day
        where create_date<=date_add(next_day('2019-02-20','MO'),-1) and create_date>=date_add(next_day('2019-02-20','MO'),-7)
    )t2
    on t1.mid_id=t2.mid_id
    left join
    (
        select mid_id
        from dws_uv_detail_wk
        where wk_dt=concat(date_add(next_day('2019-02-20','MO'),-7*2),'_',date_add(next_day('2019-02-20','MO'),-7-1))
    )t3
    on t1.mid_id=t3.mid_id
    where t2.mid_id is null and t3.mid_id is null
)t4;
View Code

需求六:流失用户数

流失用户:最近7天未登录我们称之为流失用户

使用日活明细表dws_uv_detail_day作为DWS层数据

建表语句

hive (gmall)>
drop table if exists ads_wastage_count;
create external table ads_wastage_count( 
    `dt` string COMMENT '统计日期',
    `wastage_count` bigint COMMENT '流失设备数'
) 
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_wastage_count';
View Code

导入数据

hive (gmall)>
insert into table ads_wastage_count
select
     '2019-02-20',
     count(*)
from 
(
    select mid_id
from dws_uv_detail_day
    group by mid_id
    having max(dt)<=date_add('2019-02-20',-7)
)t1;
View Code

需求七:最近连续3周活跃用户数

最近3周连续活跃的用户:通常是周一对前3周的数据做统计,该数据一周计算一次。

使用周活明细表dws_uv_detail_wk作为DWS层数据

建表语句

hive (gmall)>
drop table if exists ads_continuity_wk_count;
create external table ads_continuity_wk_count( 
    `dt` string COMMENT '统计日期,一般用结束周周日日期,如果每天计算一次,可用当天日期',
    `wk_dt` string COMMENT '持续时间',
    `continuity_count` bigint
) 
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_wk_count';
View Code

导入数据

hive (gmall)>
insert into table ads_continuity_wk_count
select 
     '2019-02-20',
     concat(date_add(next_day('2019-02-20','MO'),-7*3),'_',date_add(next_day('2019-02-20','MO'),-1)),
     count(*)
from 
(
    select mid_id
    from dws_uv_detail_wk
    where wk_dt>=concat(date_add(next_day('2019-02-20','MO'),-7*3),'_',date_add(next_day('2019-02-20','MO'),-7*2-1)) 
    and wk_dt<=concat(date_add(next_day('2019-02-20','MO'),-7),'_',date_add(next_day('2019-02-20','MO'),-1))
    group by mid_id
    having count(*)=3
)t1;
View Code

需求八:最近七天内连续三天活跃用户数

说明:最近7天内连续3天活跃用户数

使用日活明细表dws_uv_detail_day作为DWS层数据

            

建表

hive (gmall)>
drop table if exists ads_continuity_uv_count;
create external table ads_continuity_uv_count( 
    `dt` string COMMENT '统计日期',
    `wk_dt` string COMMENT '最近7天日期',
    `continuity_count` bigint
) COMMENT '连续活跃设备数'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_uv_count';
View Code

导入数据

hive (gmall)>
insert into table ads_continuity_uv_count
select
    '2019-02-12',
    concat(date_add('2019-02-12',-6),'_','2019-02-12'),
    count(*)
from
(
    select mid_id
    from
    (
        select mid_id      
        from
        (
            select 
                mid_id,
                date_sub(dt,rank) date_dif
            from
            (
                select 
                    mid_id,
                    dt,
                    rank() over(partition by mid_id order by dt) rank
                from dws_uv_detail_day
                where dt>=date_add('2019-02-12',-6) and dt<='2019-02-12'
            )t1
        )t2 
        group by mid_id,date_dif
        having count(*)>=3
    )t3 
    group by mid_id
)t4;
View Code

 

          ==================================================业务数据处理分析=================================================

 

ODS层跟原始字段要一模一样;

DWD层
  dwd_order_info订单表
  dwd_order_detail订单详情(订单和商品)
  dwd_user_info用户表
  dwd_payment_info支付流水
  dwd_sku_info商品表(增加分类)

每日用户行为宽表 dws_user_action

字段: user_id、order_count、order_amount、payment_count、payment_amount 、comment_count

drop table if exists dws_user_action;
create external table dws_user_action(
user_id string comment '用户id',
order_count bigint comment '用户下单数',
order_amount decimal(16, 2) comment '下单金额',
payment_count bigint comment '支付次数',
payment_amount decimal(16, 2) comment '支付金额',
comment_count bigint comment '评论次数'
)comment '每日用户行为宽表'
partitioned by(`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_action/'
tblproperties("parquet.compression"="snappy");
View Code

导入数据

0占位符,第一个字段要有别名

with tmp_order as(
select user_id, count(*) order_count, sum(oi.total_amount) order_amount from dwd_order_info oi
where date_format(oi.create_time, 'yyyy-MM-dd')='2019-02-10' group by user_id
),
tmp_payment as(
select user_id, count(*) payment_count, sum(pi.total_amount) payment_amount from dwd_payment_info pi
where date_format(pi.payment_time, 'yyyy-MM-dd')='2019-02-10' group by user_id
),
tmp_comment as(
select user_id, count(*) comment_count from dwd_comment_log c
where date_format(c.dt, 'yyyy-MM-dd')='2019-02-10' group by user_id
)
insert overwrite table dws_user_action partition(dt='2019-02-10')
select user_actions.user_id, sum(user_actions.order_count), sum(user_actions.order_amount), 
sum(user_actions.payment_count),
sum(user_actions.payment_amount),
sum(user_actions.comment_count) from(
select user_id, order_count, order_amount, 0 payment_count, 0 payment_amount, 0 comment_count from tmp_order
union all select user_id, 0, 0, payment_count, payment_amount, 0 from tmp_payment
union all select user_id, 0, 0, 0, 0, comment_count from tmp_comment
) user_actions group by user_id;
View Code

需求四.  GMV(Gross Merchandise Volume):一段时间内的成交总额

GMV拍下订单金额;包括付款和未付款;

建表ads_gmv_sum_day语句:

drop table if exists ads_gmv_sum_day;
create table ads_gmv_sum_day(
`dt` string comment '统计日期',
`gmv_count` bigint comment '当日GMV订单个数',
`gmv_amount` decimal(16, 2) comment '当日GMV订单总额',
`gmv_payment` decimal(16, 2) comment '当日支付金额'
) comment 'GMV'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_gmv_sum_day';
View Code

导入数据: from用户行为宽表dws_user_action

sum(order_count)  gmv_count 、 sum(order_amount) gmv_amount 、sum(payment_amount) payment_amount  过滤日期,以dt分组;

insert into table ads_gmv_sum_day 
select '2019-02-10' dt, sum(order_count) gmv_count, sum(order_amount) gmv_amount, sum(payment_amount) gmv_payment
from dws_user_action where dt='2019-02-10' group by dt;

编写脚本:

#/bin/bash
APP=gmall
hive=/opt/module/hive/bin/hive
if [ -n "$1" ]; then
    do_date=$1
else
    do_date=`date -d "-1 day" +%F`
fi    
sql="
insert into table "$APP".ads_gmv_sum_day 
select '$do_date' dt, sum(order_count) gmv_count, sum(order_amount) gmv_amount, sum(payment_amount) gmv_payment
from "$APP".dws_user_action where dt='$do_date' group by dt;
"
$hive -e "$sql";
View Code

需求五. 转化率=新增用户/日活用户

           

 

ads_user_convert_day
  dt
  uv_m_count   当日活跃设备
  new_m_count  当日新增设备
  new_m_ratio  新增占日活比率

ads_uv_count      用户活跃数(在行为数仓中;) day_count dt
ads_new_mid_count 用户新增表(行为数仓中) new_mid_count create_date

 建表ads_user_convert_day

drop table if exists ads_user_convert_day;
create table ads_user_convert_day(
`dt` string comment '统计日期',
`uv_m_count` bigint comment '当日活跃设备',
`new_m_count` bigint comment '当日新增设备',
`new_m_radio` decimal(10, 2) comment '当日新增占日活比率'
)comment '转化率'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_convert_day/';
View Code

数据导入

cast(sum( uc.nmc)/sum( uc.dc)*100 as decimal(10,2))  new_m_ratio  ; 使用union all 

insert into table ads_user_convert_day select '2019-02-10', sum(uc.dc) sum_dc, sum(uc.nmc) sum_nmc, 
cast(sum(uc.nmc)/sum(uc.dc) * 100 as decimal(10, 2)) new_m_radio
from(select day_count dc, 0 nmc from ads_uv_count where dt='2019-02-10'
union all select 0 dc, new_mid_count from ads_new_mid_count where create_date='2019-02-10'
)uc;
View Code

用户行为漏斗分析  

  访问到下单转化率| 下单到支付转化率

ads_user_action_convert_day
dt
total_visitor_m_count                 总访问人数
order_u_count                        下单人数
visitor2order_convert_ratio         访问到下单转化率
payment_u_count                     支付人数
order2payment_convert_ratio            下单到支付转化率

dws_user_action (宽表中)
    user_id
    order_count
    order_amount
    payment_count
    payment_amount 
    comment_count
ads_uv_count 用户活跃数(行为数仓中)
    dt
    day_count 
    wk_count
    mn_count
    is_weekend
    is_monthend

建表

drop table if exists ads_user_action_convert_day;
create table ads_user_action_convert_day(
`dt` string comment '统计日期',
`total_visitor_m_count` bigint comment '总访问人数',
`order_u_count` bigint comment '下单人数',
`visitor2order_convert_radio` decimal(10, 2) comment '访问到下单转化率',
`payment_u_count` bigint comment '支付人数',
`order2payment_convert_radio` decimal(10, 2) comment '下单到支付的转化率'
)COMMENT '用户行为漏斗分析'
row format delimited  fields terminated by '\t' 
location '/warehouse/gmall/ads/ads_user_convert_day/'
;
View Code

插入数据

insert into table ads_user_action_convert_day
select '2019-02-10', uv.day_count, ua.order_count, 
cast(ua.order_count/uv.day_count * 100 as decimal(10, 2)) visitor2order_convert_radio,
ua.payment_count,
cast(ua.payment_count/ua.order_count * 100 as decimal(10, 2)) order2payment_convert_radio
from(
select sum(if(order_count>0, 1, 0)) order_count,
sum(if(payment_count>0, 1, 0)) payment_count
from dws_user_action where dt='2019-02-10'
)ua, ads_uv_count  uv where uv.dt='2019-02-10';
View Code

需求六. 品牌复购率

  需求:以月为单位统计,购买2次以上商品的用户

用户购买商品明细表 dws_sale_detail_daycount:(宽表)

建表dws_sale_detail_daycount

drop table if exists dws_sale_detail_daycount;

create external table dws_sale_detail_daycount(
user_id   string  comment '用户 id',
sku_id    string comment '商品 Id',
user_gender  string comment '用户性别',
user_age string  comment '用户年龄',
user_level string comment '用户等级',
order_price decimal(10,2) comment '商品价格',
sku_name string   comment '商品名称',
sku_tm_id string   comment '品牌id',
sku_category3_id string comment '商品三级品类id',
sku_category2_id string comment '商品二级品类id',
sku_category1_id string comment '商品一级品类id',
sku_category3_name string comment '商品三级品类名称',
sku_category2_name string comment '商品二级品类名称',
sku_category1_name string comment '商品一级品类名称',
spu_id  string comment '商品 spu',
sku_num  int comment '购买个数',
order_count string comment '当日下单单数',
order_amount string comment '当日下单金额'
) comment  '用户购买商品明细表'
partitioned by(`dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_sale_detail_daycount'
tblproperties("parquet.compression"="snappy");
View Code

数据导入

ods_order_detail订单详情表、dwd_user_info用户表、dwd_sku_info商品表

with tmp_detail as(
select user_id, sku_id, sum(sku_num) sku_num, count(*) order_count, sum(od.order_price*sku_num) order_amount
from ods_order_detail od where od.dt='2019-02-10' and user_id is not null group by user_id, sku_id
)
insert overwrite table dws_sale_detail_daycount partition(dt='2019-02-10')
select
tmp_detail.user_id,
tmp_detail.sku_id,
u.gender,
months_between('2019-02-10', u.birthday)/12 age,
u.user_level,
price,
sku_name,
tm_id,
category3_id ,  
category2_id ,  
category1_id ,  
category3_name ,  
category2_name ,  
category1_name ,  
spu_id,
tmp_detail.sku_num,
tmp_detail.order_count,
tmp_detail.order_amount 
from tmp_detail 
left join dwd_user_info u on u.id=tmp_detail.user_id and u.dt='2019-02-10'
left join dwd_sku_info s on s.id=tmp_detail.sku_id and s.dt='2019-02-10';
View Code

ADS层 品牌复购率报表分析

建表ads_sale_tm_category1_stat_mn

 buycount 购买人数、buy_twice_last两次以上购买人数、

 buy_twice_last_ratio '单次复购率'、

buy_3times_last '三次以上购买人数',

    buy_3times_last_ratio 多次复购率'

drop table ads_sale_tm_category1_stat_mn;
create  table ads_sale_tm_category1_stat_mn
(   
    tm_id string comment '品牌id ' ,
    category1_id string comment '1级品类id ',
    category1_name string comment '1级品类名称 ',
    buycount   bigint comment  '购买人数',
    buy_twice_last bigint  comment '两次以上购买人数',
    buy_twice_last_ratio decimal(10,2)  comment  '单次复购率', 
    buy_3times_last   bigint comment   '三次以上购买人数',
    buy_3times_last_ratio decimal(10,2)  comment  '多次复购率' ,
    stat_mn string comment '统计月份',
    stat_date string comment '统计日期' 
)   COMMENT '复购率统计'
row format delimited  fields terminated by '\t' 
location '/warehouse/gmall/ads/ads_sale_tm_category1_stat_mn/'
;
View Code

插入数据

  sum(if(mn.order_count>=1,1,0)) buycount,

    sum(if(mn.order_count>=2,1,0)) buyTwiceLast,

    sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0)) buyTwiceLastRatio,

    sum(if(mn.order_count>=3,1,0))  buy3timeLast  ,

    sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0)) buy3timeLastRatio ,

    date_format('2019-02-10' ,'yyyy-MM') stat_mn,

insert into table ads_sale_tm_category1_stat_mn
select mn.sku_tm_id,
mn.sku_category1_id,
mn.sku_category1_name,
sum(if(mn.order_count >= 1, 1, 0)) buycount,
sum(if(mn.order_count >= 2, 1, 0)) buyTwiceLast,
sum(if(mn.order_count >= 2, 1, 0)) / sum(if(mn.order_count >= 1, 1, 0)) buyTwiceLastRatio,
sum(if(mn.order_count >= 3, 1, 0)) buy3timeLast,
sum(if(mn.order_count >= 3, 1, 0)) / sum(if(mn.order_count >= 1, 1, 0)) buy3timeLastRadio,
date_format ('2019-02-10' ,'yyyy-MM') stat_mn,
'2019-02-10' stat_date
from (
select sd.sku_tm_id, sd.sku_category1_id, sd.sku_category1_name, user_id, sum(order_count) order_count
from dws_sale_detail_daycount sd where date_format(dt, 'yyyy-MM') <= date_format('2019-02-10', 'yyyy-MM')
group by sd.sku_tm_id, sd.sku_category1_id, user_id, sd.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name
;
View Code

数据导入脚本

1)在/home/kris/bin目录下创建脚本ads_sale.sh

[kris@hadoop101 bin]$ vim ads_sale.sh

#!/bin/bash

# 定义变量方便修改
APP=gmall
hive=/opt/module/hive/bin/hive

# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
    do_date=$1
else 
    do_date=`date  -d "-1 day"  +%F`  
fi 

sql="

set hive.exec.dynamic.partition.mode=nonstrict;

insert into table "$APP".ads_sale_tm_category1_stat_mn
select   
    mn.sku_tm_id,
    mn.sku_category1_id,
    mn.sku_category1_name,
    sum(if(mn.order_count>=1,1,0)) buycount,
    sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
    sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0)) buyTwiceLastRatio,
    sum(if(mn.order_count>=3,1,0))  buy3timeLast  ,
    sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0)) buy3timeLastRatio ,
    date_format('$do_date' ,'yyyy-MM') stat_mn,
    '$do_date' stat_date
from 
(     
    select od.sku_tm_id, 
        od.sku_category1_id,
        od.sku_category1_name,  
        user_id , 
        sum(order_count) order_count
    from  "$APP".dws_sale_detail_daycount  od 
    where date_format(dt,'yyyy-MM')<=date_format('$do_date' ,'yyyy-MM')
    group by od.sku_tm_id, od.sku_category1_id, user_id, od.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;

"
$hive -e "$sql"

增加脚本执行权限
[kris@hadoop101 bin]$ chmod 777 ads_sale.sh
执行脚本导入数据
[kris@hadoop101 bin]$ ads_sale.sh 2019-02-11
查看导入数据
hive (gmall)>select * from ads_sale_tm_category1_stat_mn limit 2;
View Code

品牌复购率结果输出到MySQL

  1)在MySQL中创建ads_sale_tm_category1_stat_mn表

create  table ads_sale_tm_category1_stat_mn
(   
    tm_id varchar(200) comment '品牌id ' ,
    category1_id varchar(200) comment '1级品类id ',
    category1_name varchar(200) comment '1级品类名称 ',
    buycount   varchar(200) comment  '购买人数',
    buy_twice_last varchar(200) comment '两次以上购买人数',
    buy_twice_last_ratio varchar(200) comment  '单次复购率', 
    buy_3times_last   varchar(200) comment   '三次以上购买人数',
    buy_3times_last_ratio varchar(200)  comment  '多次复购率' ,
    stat_mn varchar(200) comment '统计月份',
    stat_date varchar(200) comment '统计日期' 
)  
View Code

  2)编写Sqoop导出脚本

  在/home/kris/bin目录下创建脚本sqoop_export.sh

  [kris@hadoop101 bin]$ vim sqoop_export.sh

#!/bin/bash

db_name=gmall

export_data() {
/opt/module/sqoop/bin/sqoop export \
--connect "jdbc:mysql://hadoop101:3306/${db_name}?useUnicode=true&characterEncoding=utf-8"  \
--username root \
--password 123456 \
--table $1 \
--num-mappers 1 \
--export-dir /warehouse/$db_name/ads/$1 \
--input-fields-terminated-by "\t"  \
--update-key "tm_id,category1_id,stat_mn,stat_date" \
--update-mode allowinsert \
--input-null-string '\\N'    \
--input-null-non-string '\\N'  
}

case $1 in
  "ads_sale_tm_category1_stat_mn")
     export_data "ads_sale_tm_category1_stat_mn"
;;
   "all")
     export_data "ads_sale_tm_category1_stat_mn"
;;
esac
View Code

3)执行Sqoop导出脚本

  [kris@hadoop101 bin]$ chmod 777 sqoop_export.sh

  [kris@hadoop101 bin]$ sqoop_export.sh all

4)在MySQL中查看结果

  SELECT * FROM ads_sale_tm_category1_stat_mn;

 

求每个等级的用户对应的复购率前十的商品排行

1)每个等级,每种商品,买一次的用户数,买两次的用户数=》得出复购率

2)利用开窗函数,取每个等级的前十

3)形成脚本

用户购买明细宽表 dws_sale_detail_daycount

① t1--按user_leval, sku_id, user_id统计下单次数

select 
    user_level, 
    sku_id, 
    user_id, 
    sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id limit 10;
View Code

② t2 --求出每个等级,每种商品,买一次的用户数,买两次的用户数 得出复购率

select 
    t1.user_level,
    t1.sku_id,
    sum(if(t1.order_count_sum > 0, 1, 0)) buyOneCount,
    sum(if(t1.order_count_sum > 1, 1, 0)) buyTwiceCount,
    sum(if(t1.order_count_sum > 1, 1, 0)) / sum(if(t1.order_count_sum > 0, 1, 0)) * 100 buyTwiceCountRatio,
    '2019-02-13' stat_date
from(
select 
    user_level, 
    sku_id, 
    user_id, 
    sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id
) t1
group by t1.user_level, t1.sku_id;
View Code

③ t3 --按用户等级分区,复购率排序

select
    t2.user_level,
    t2.sku_id,
    t2.buyOneCount,
    t2.buyTwiceCount,
    t2.buyTwiceCountRatio,
    t2.stat_date
from(
select 
    t1.user_level,
    t1.sku_id,
    sum(if(t1.order_count_sum > 0, 1, 0)) buyOneCount,
    sum(if(t1.order_count_sum > 1, 1, 0)) buyTwiceCount,
    sum(if(t1.order_count_sum > 1, 1, 0)) / sum(if(t1.order_count_sum > 0, 1, 0)) * 100 buyTwiceCountRatio,
    '2019-02-13' stat_date
from(
select 
    user_level, 
    sku_id, 
    user_id, 
    sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id
) t1
group by t1.user_level, t1.sku_id
)t2
View Code

④ -分区排序 rank()

select
    t2.user_level,
    t2.sku_id,
    t2.buyOneCount,
    t2.buyTwiceCount,
    t2.buyTwiceCountRatio,
rank() over(partition by t2.sku_id order by t2.buyTwiceCount) rankNo
from(
select 
    t1.user_level,
    t1.sku_id,
    sum(if(t1.order_count_sum > 0, 1, 0)) buyOneCount,
    sum(if(t1.order_count_sum > 1, 1, 0)) buyTwiceCount,
    sum(if(t1.order_count_sum > 1, 1, 0)) / sum(if(t1.order_count_sum > 0, 1, 0)) * 100 buyTwiceCountRatio,
    '2019-02-13' stat_date
from(
select 
    user_level, 
    sku_id, 
    user_id, 
    sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id
) t1
group by t1.user_level, t1.sku_id
)t2
View Code

⑤  作为子查询取前10

select t3.user_level, t3.sku_id, t3.buyOneCount, t3.buyTwiceCount, t3.buyTwiceCountRatio, t3.rankNo
from(
select
    t2.user_level,
    t2.sku_id,
    t2.buyOneCount,
    t2.buyTwiceCount,
    t2.buyTwiceCountRatio,
rank() over(partition by t2.sku_id order by t2.buyTwiceCount) rankNo
from(
select 
    t1.user_level,
    t1.sku_id,
    sum(if(t1.order_count_sum > 0, 1, 0)) buyOneCount,
    sum(if(t1.order_count_sum > 1, 1, 0)) buyTwiceCount,
    sum(if(t1.order_count_sum > 1, 1, 0)) / sum(if(t1.order_count_sum > 0, 1, 0)) * 100 buyTwiceCountRatio,
    '2019-02-13' stat_date
from(
select 
    user_level, 
    sku_id, 
    user_id, 
    sum(order_count) order_count_sum
from dws_sale_detail_daycount
where date_format(dt, 'yyyy-MM') = date_format('2019-02-13', 'yyyy-MM')
group by user_level, sku_id, user_id
) t1
group by t1.user_level, t1.sku_id
)t2
) t3 where rankNo <= 10;
View Code

 

o
粉丝 0
博文 500
码字总数 0
作品 0
私信 提问
加载中
请先登录后再评论。
大数据之数据仓库

###1. 摘要对于大数据而言,数据仓库承载着整个企业的全业务的数据。早期数仓在关系型数据如Oracle,MySql上。到大数据时代,基于hadoop生态的大数据架构,数仓基本上都是基于hive的数仓。对...

osc_9vxdigiw
2019/12/24
2
0
数加DataWorks在国网浙江电力的最佳实践

2017云栖大会dataworks专场,国网浙江电力大数据平台架构师陈振带来dataworks在国网应用的实践。本文主要从建设数据仓库的三个痛点开始谈起,引出企业级数仓架构设计,着重通过数据集成和企业...

云迹九州
2018/01/10
0
0
数据仓库(二) 数仓理论(重点核心)

文章目录 数据仓库(二) 数仓理论(重点核心) 数仓分层 关系建模与维度建模 维度表和事实表(重点) 数据仓库建模(绝对重点) 数据同步策略 数据仓库(二) 数仓理论(重点核心) 麻烦给我来一...

溜三丝耶
06/24
0
0
如果你也想做实时数仓…

数据仓库也是公司数据发展到一定规模后必然会提供的一种基础服务,数据仓库的建设也是“数据智能”中必不可少的一环。本文将从数据仓库的简介、经历了怎样的发展、如何建设、架构演变、应用案...

阿里云云栖社区
2019/09/11
0
0

没有更多内容

加载失败,请刷新页面

加载更多

是否有可能从另一个git存储库中挑选一个提交? - Is it possible to cherry-pick a commit from another git repository?

问题: I'm working with a git repository that needs a commit from another git repository that knows nothing of the first. 我正在使用一个git存储库,需要从另一个不知道第一个存储库......

技术盛宴
昨天
26
0
【LeetCode】53 盛最多水的容器

题目 解题思路 双指针法: https://leetcode-cn.com/problems/container-with-most-water/solution/sheng-zui-duo-shui-de-rong-qi-by-leetcode-solution/ 代码 public class Solution { ......

JaneRoad
昨天
20
0
阿里云OSS配置CDN加速

首先购买CDN流量包 然后添加域名 添加好后 然后将域名OSS.xxxx.com 解析到 生成的CDN域名上 这样就完成了

可达鸭眉头一皱
昨天
16
0
js 整数与小数正则替换片段

说明 /(\d+)/g 整数 /(\d+\.\d+)rem/g 小数 /(\d+\.\d+|\d+)rem/g 其中 | 或 条件 例子 全局查找带 rem 单位的,替换成 px 单位 let text = text.replace(/(\d+\.\d+|\d+)rem/g, function(s......

DrChenXX
昨天
17
0
ubuntu下minicorba例子

一、开发环境安装 sudo apt install omniorb omniorb-idl omniidl libomniorb4-dev libomniorb4-2 omniorb-nameserver libomnithread4 libomnithread4-dev 二、源文件: Hi.idl module ......

wangxuwei
昨天
18
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部