连击 天
fork: star:
一.损失函数的使用 损失函数【也称目标函数或优化评分函数】是编译模型时所需的两个参数之一。 model.compile(loss='mean_squared_error', optimizer='sgd') 或 from keras ...
Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生。但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层。本文将首先引入Dro...
产品渊源: 随着人工智能技术的快速发展,各种深度学习框架层出不穷,为了提高效率,更好地让人工智能快速落地,很多企业都很关注深度学习训练的平台化问题。例如,如何提升GPU等硬件资源的利...
作者:HelloGitHub-小鱼干 摘要:GitHub Trending 上周看点,老项目依旧抢眼,系统设计必看 Repo:The System Design Primer 周获 1k+ star,而新开源的项目 Real-Time-Person-Removal 表现也...
最近准备大致将CNN目标检测的发展脉络理一理(暂时只讲CNN系列部分,YOLO和SSD,后面会抽空整理)。 目标检测的发展大致起始于2000年前后(具体我也没去深究,如果有误还请大佬们指正...
本文始发于个人公众号:TechFlow,原创不易,求个关注 <br> 今天这篇文章和大家聊聊机器学习领域的熵。 我在看paper的时候发现对于交叉熵的理解又有些遗忘,复习了一下之后,又有了一些新的认...
论文地址:2018_用于音频超分辨率的时频网络 博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/12345950.html 摘要 音频超分辨率(即带宽扩展)是提高音频信号时域分辨率的...
没有更多内容
加载失败,请刷新页面
没有更多内容
文章删除后无法恢复,确定删除此文章吗?
动弹删除后,数据将无法恢复
评论删除后,数据将无法恢复