# yolov3 使用自带的python接口darknet.py 处理单张图片和视频

2020/12/21 08:53

### project 下载

git clone https://github.com/pjreddie/darknet
cd darknet
#改一些配置 ,具体操作见 我的上一份博客的结尾部分
#（https://blog.csdn.net/qq_20241587/article/details/111176541）
make

### 处理单张图片

1 # lib = CDLL("libdarknet.so", RTLD_GLOBAL)   , 改成自己的项目的具体地址

2  使用 cv2.rectangle  画框框， 使用cv2.putText 放文字，为了避免框框和文字交叉，我加了一丢丢的偏移量。

label_i = box_i[0]    #标签
prob_i = box_i[1]    #标签置信度
x_ = box_i[2][0]
y_ = box_i[2][1]
w_ = box_i[2][2]
h_ = box_i[2][3]     # bbox信息(x,y,w,h)为物体的中心位置相对格子位置的偏移及宽度和高度,

cv2.rectangle(image, (int(x_ - w_ / 2), int(y_ - h_ / 2)),
(int(x_ + w_ / 2), int(y_ + h_ / 2)),
color, line_type)
cv2.putText(image, text_, (int(x_ - w_ / 2 - 5), int(y_ - h_ / 2 - 5)), cv2.FONT_HERSHEY_DUPLEX, 0.7, color,
2)

from ctypes import *
import math
import random
import cv2
import os

def sample(probs):
s = sum(probs)
probs = [a / s for a in probs]
r = random.uniform(0, 1)
for i in range(len(probs)):
r = r - probs[i]
if r <= 0:
return i
return len(probs) - 1

def c_array(ctype, values):
arr = (ctype * len(values))()
arr[:] = values
return arr

class BOX(Structure):
_fields_ = [("x", c_float),
("y", c_float),
("w", c_float),
("h", c_float)]

class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classes", c_int),
("prob", POINTER(c_float)),
("objectness", c_float),
("sort_class", c_int)]

class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
("c", c_int),
("data", POINTER(c_float))]

_fields_ = [("classes", c_int),
("names", POINTER(c_char_p))]

lib = CDLL("/home/jiantang/桌面/enn/workcode/yoloV3/github/darknet/libdarknet.so", RTLD_GLOBAL)
# lib = CDLL("libdarknet.so", RTLD_GLOBAL)
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int

predict = lib.network_predict
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)

set_gpu = lib.cuda_set_device
set_gpu.argtypes = [c_int]

make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE

get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)]
get_network_boxes.restype = POINTER(DETECTION)

make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)

free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]

free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]

network_predict = lib.network_predict
network_predict.argtypes = [c_void_p, POINTER(c_float)]

reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]

do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]

do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]

free_image = lib.free_image
free_image.argtypes = [IMAGE]

letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE

rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]

predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)

# net_d = load_net(b"../cfg/yolov3.cfg", b"../yolov3.weights", 0)

def classify(net, meta, im):
out = predict_image(net, im)
res = []
for i in range(meta.classes):
res.append((meta.names[i], out[i]))
res = sorted(res, key=lambda x: -x[1])
return res

def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
num = c_int(0)
pnum = pointer(num)
predict_image(net, im)
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum)
num = pnum[0]
if (nms): do_nms_obj(dets, num, meta.classes, nms);

res = []
for j in range(num):
for i in range(meta.classes):
if dets[j].prob[i] > 0:
b = dets[j].bbox
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h)))
res = sorted(res, key=lambda x: -x[1])
free_image(im)
free_detections(dets, num)
return res

def detect_and_boxing(net, meta, b_path, raw_path, save_path,
color=(0.255, 255), line_type=1):
r = detect(net, meta, b_path)
if not len(r) > 0:
print("nothing detected in this picture!")
else:
for i in range(len(r)):
box_i = r[i]
label_i = box_i[0]
prob_i = box_i[1]
x_ = box_i[2][0]
y_ = box_i[2][1]
w_ = box_i[2][2]
h_ = box_i[2][3]
text_ = str(label_i) + "," + str(round(prob_i, 3))

cv2.rectangle(image, (int(x_ - w_ / 2), int(y_ - h_ / 2)),
(int(x_ + w_ / 2), int(y_ + h_ / 2)),
color, line_type)
cv2.putText(image, text_, (int(x_ - w_ / 2 - 5), int(y_ - h_ / 2 - 5)), cv2.FONT_HERSHEY_DUPLEX, 0.7, color,
2)
cv2.imwrite(save_path, image)
print("boxing ", i, " found ", label_i, "with prob = ", prob_i, ", finished!")
print("box position is :", box_i[2])

if __name__ == "__main__":
# net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0)
# im = load_image("data/wolf.jpg", 0, 0)
# r = classify(net, meta, im)
# print(r)

b_path = b"../data/hat_sougou2.jpg"
raw_path = "../data/hat_sougou2.jpg"
save_path = "/home/jiantang/z_test/hat_sougou2.jpg"
detect_and_boxing(net, meta, b_path=b_path, raw_path=raw_path, save_path=save_path)


### 处理视频

（这个视频43秒，63M，.avi 格式。

产生的框好的新视频为 41秒， 55帧每秒， 6.9G，.avi 格式，每帧400kb左右 ）

1  .avi格式产生的新视频size 好大，63M 成了6.9G ，而且这个代码仅支持.avi格式。

2 因为是一个视频，不知道原视频帧率，所以新视频指定帧率后，时长有一丢丢差异。

3 处理速度感人 （中间有很多帧s的磁盘读写操作，，严重拉垮了速度。 model detect 速度使用GPU还是很快的，真要用实时的，不用把帧和新帧存起来，直接走内存display）

from ctypes import *
import math
import random
import cv2
import os

def sample(probs):
s = sum(probs)
probs = [a / s for a in probs]
r = random.uniform(0, 1)
for i in range(len(probs)):
r = r - probs[i]
if r <= 0:
return i
return len(probs) - 1

def c_array(ctype, values):
arr = (ctype * len(values))()
arr[:] = values
return arr

class BOX(Structure):
_fields_ = [("x", c_float),
("y", c_float),
("w", c_float),
("h", c_float)]

class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classes", c_int),
("prob", POINTER(c_float)),
("objectness", c_float),
("sort_class", c_int)]

class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
("c", c_int),
("data", POINTER(c_float))]

_fields_ = [("classes", c_int),
("names", POINTER(c_char_p))]

lib = CDLL("/home/jiantang/桌面/enn/workcode/yoloV3/github/darknet/libdarknet.so", RTLD_GLOBAL)
# lib = CDLL("libdarknet.so", RTLD_GLOBAL)
lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int

predict = lib.network_predict
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)

set_gpu = lib.cuda_set_device
set_gpu.argtypes = [c_int]

make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.restype = IMAGE

get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)]
get_network_boxes.restype = POINTER(DETECTION)

make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)

free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]

free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]

network_predict = lib.network_predict
network_predict.argtypes = [c_void_p, POINTER(c_float)]

reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]

do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]

do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]

free_image = lib.free_image
free_image.argtypes = [IMAGE]

letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.restype = IMAGE

rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]

predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)

def classify(net, meta, im):
out = predict_image(net, im)
res = []
for i in range(meta.classes):
res.append((meta.names[i], out[i]))
res = sorted(res, key=lambda x: -x[1])
return res

def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
num = c_int(0)
pnum = pointer(num)
predict_image(net, im)
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum)
num = pnum[0]
if (nms): do_nms_obj(dets, num, meta.classes, nms);

res = []
for j in range(num):
for i in range(meta.classes):
if dets[j].prob[i] > 0:
b = dets[j].bbox
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h)))
res = sorted(res, key=lambda x: -x[1])
free_image(im)
free_detections(dets, num)
return res

# calc all box , red label for the biggest one ,yellow label for the rest, save the img to a specific path
def detect_and_boxing_default(b_path, raw_path, save_path,
color=(0.255, 255), line_type=1):
print("checking pic...", raw_path)
r = detect(net_d, meta_d, b_path)
if not len(r) > 0:
print("nothing detected in this picture!")
else:
print(len(r), " stuff detected in this picture! boxing...")
print("going to save as :", save_path)
for i in range(len(r)):
box_i = r[i]
label_i = box_i[0]
prob_i = box_i[1]
x_ = box_i[2][0]
y_ = box_i[2][1]
w_ = box_i[2][2]
h_ = box_i[2][3]
text_ = str(label_i) + "," + str(round(prob_i, 3))

cv2.rectangle(image, (int(x_ - w_ / 2), int(y_ - h_ / 2)),
(int(x_ + w_ / 2), int(y_ + h_ / 2)),
color, line_type)
cv2.putText(image, text_, (int(x_ - w_ / 2 - 5), int(y_ - h_ / 2 - 5)), cv2.FONT_HERSHEY_DUPLEX, 0.7, color,
2)
cv2.imwrite(save_path, image)

def video_to_pics(video_path='/home/jiantang/work_data/sample_video.avi',
video_out_path='/home/jiantang/work_data/'):
print("video_to_pics start...")
vc = cv2.VideoCapture(video_path)
c = 1
if vc.isOpened():
else:
print('open error!')
rval = False
count_c = 1
while rval:
if rval:
print("dealing with frame : ", count_c)
cv2.imwrite(video_out_path + str(int(c)) + '.jpg', frame)
c += 1
cv2.waitKey(1)
count_c += 1
vc.release()
print("video_to_pics finished...")

def pics_boxing(pics_path, save_path):
raw_save_path = save_path
print("pics_boxing start...")
print("checking path : ", pics_path)
pics_names = os.listdir(pics_path)
print("found pics num :", len(pics_names))
count_c = 1
for name in pics_names:
print("dealing with pics ", count_c)
raw_path = pics_path + "/" + name
b_path = bytes(raw_path, encoding="utf8")
save_path = raw_save_path + "/" + name
detect_and_boxing_default(b_path, raw_path, save_path)
count_c += 1
print("pics_boxing finished...")

def pics_to_video(pics_path, video_new_path='/home/jiantang/work_data/sample_video_new.avi', ):
print("pics_to_video start...")
print("checking files in :", pics_path)
file_list = os.listdir(pics_path)
# remove non-jpg files, remove  .jpg  sign
tmp_jpg = []
for name in file_list:
if not name.endswith('.jpg'):
print("found sth called:", name, ", skip it.")
file_list.remove(name)
continue
tmp_jpg.append(name.replace(".jpg", ""))
# sort names
tmp_jpg.sort(key=int)

fourcc = cv2.VideoWriter_fourcc('I', '4', '2', '0')  # 设置输出视频为avi格式
# cap_fps是帧率，可以根据随意设置；size要和图片的size一样，但是通过img.shape得到图像的参数是
# （height，width，channel），但是此处的size要传的是（width，height），这里一定要注意注意，
# 不然结果会打不开，提示“无法解码多工传送的流”等.比如通过img.shape得到常用的图片尺寸
# （1080,1920,3），则size设为（1920,1080）
cap_fps = 50
size = (1920, 1080)
# 设置视频输出的参数
video = cv2.VideoWriter(video_new_path, fourcc, cap_fps, size)
# video.write默认保存彩色图，如果是彩色图，则直接保存
for name in tmp_jpg:
img_E = cv2.imread(pics_path + "/" + name + ".jpg")
video.write(img_E)
video.release()
print("pics_to_video finished...")

video_path = '/home/jiantang/work_data/sample_video.avi'
video_out_path = '/home/jiantang/work_data/pics/'
video_out_dir = '/home/jiantang/work_data/pics'
video_out_new_path = '/home/jiantang/work_data/pics_new'
video_new_path = '/home/jiantang/work_data/sample_video_new.avi'

video_to_pics(video_path, video_out_path)
pics_boxing(video_out_dir, video_out_new_path)
pics_to_video(video_out_new_path, video_new_path)


0
0 收藏

0 评论
0 收藏
0