# Latex(数学）

2019/03/14 08:37

[toc]

## 字体

### 罗马字体 \mathrm{}

for i in range(97, 123):
print('$\\mathrm{{{0}}}$'.format(chr(i)))

$\mathrm{*}$


for i in range(65, 91):
print('$\\mathrm{{{0}}}$'.format(chr(i)))

$\mathrm{*}$


### 斜体 \mathit{}

$\mathit{*}$

for i in range(97, 123):
print('$\\mathit{{{0}}}$'.format(chr(i)))


for i in range(65, 91):
print('$\\mathit{{{0}}}$'.format(chr(i)))


### 粗体 \mathbf{}

$\mathbf{*}$

for i in range(97, 123):
print('$\\mathbf{{{0}}}$'.format(chr(i)))


for i in range(65, 91):
print('$\\mathbf{{{0}}}$'.format(chr(i)))


### 无衬线-f \mathsf{}

$\mathsf{*}$

for i in range(97, 123):
print('$\\mathsf{{{0}}}$'.format(chr(i)))


for i in range(65, 91):
print('$\\mathsf{{{0}}}$'.format(chr(i)))


### 打字机字体 \mathtt{}

$\mathtt{*}$

for i in range(97, 123):
print('$\\mathtt{{{0}}}$'.format(chr(i)))


for i in range(65, 91):
print('$\\mathtt{{{0}}}$'.format(chr(i)))


### 书法字体 \mathcal{}

$\mathcal{*}$

for i in range(65, 91):
print('$\\mathcal{{{0}}}$'.format(chr(i)))


### 黑板粗体 \mathbb{} \usepackage{amssymb}

$\mathbb{*}$

for i in range(65, 91):
print('$\\mathbb{{{0}}}$'.format(chr(i)))


### 德文尖角体 \mathfrak{} \usepackage{amssymb}

$\mathfrak{*}$

for i in range(97, 123):
print('$\\mathfrak{{{0}}}$'.format(chr(i)))


for i in range(65, 91):
print('$\\mathfrak{{{0}}}$'.format(chr(i)))


### 花体 \mathscr{} \usepackage{mathrsfs}

$\mathscr{}$

for i in range(65, 91):
print('$\\mathscr{{{0}}}$'.format(chr(i)))


## 数学符号表（摘自《140分钟学会LaTex》）

### 二元关系

$\not\in$


$\not\in$

## 一些数学公式写法的例子

$\mathbf{Var}[(CR)_{ij}] = \mathop{\sum}\limits_{t=1}^{c}\mathbf{Var}[X_t] =\mathop{\sum}\limits_{k=1}^{n}\frac{A_{ik}^{2}B_{kj}^{2}}{cp_k} -\frac{1}{c}(AB)_{ij}^2$


$\mathbf{Var}[(CR){ij}] = \mathop{\sum}\limits{t=1}^{c}\mathbf{Var}[X_t] =\mathop{\sum}\limits_{k=1}^{n}\frac{A_{ik}^{2}B_{kj}^{2}}{cp_k} -\frac{1}{c}(AB)_{ij}^2$

\begin{displaymath}
\begin{array}{ll}
\min & E[\|AB-CR\|_F^2]\\
s.t. & \mathop{\sum}\limits_{i=1}^{n}p_i = 1
\end{array}
\end{displaymath}


$\begin{array}{ll} \min & E[|AB-CR|F^2]\ s.t. & \mathop{\sum}\limits{i=1}^{n}p_i = 1 \end{array}$

$#\usepackage{amssymb, amsmath} \begin{split} x_k = & x_{k-1} + \gamma_k[A_kx_{k-1}-(x_{k-1}^{\top}A_kx_{k-1})x_{k-1}]\\ =& x_{k-1} + \gamma_k[Ax_{k-1}-(x_{k-1}^{\mathrm{T}}Ax_{k-1})x_{k-1}]\\ &+\gamma_k[(A_k-A)x_{k-1}-(x_{k-1}^{\top}(A_k-A)x_{k-1})x_{k-1} \end{split}$


$$\label{eq:1} \frac{\mathrm{d}\|z\|_2^{2}}{\mathrm{d}t} = 2z\frac{\mathrm{d}z}{\mathrm{d}t} = 0$$
#\ref{eq:1}引用


$\underbrace{a+b+\cdots+z}_{26}$


$\underbrace{a+b+\cdots+z}_{26}$

\begin{displaymath}
\mathbf{X} =
\left( \begin{array}{ccc}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array} \right)
\end{displaymath}


\begin{displaymath}
y = \left\{ \begin{array}{ll}
a & \textrm{if $d>c$}\\
b+x & \textrm{in the morning}\\
l & \textrm{all day long}
\end{array} \right.
\end{displaymath}


$y = \left{ \begin{array}{ll} a & \textrm{if d>c}\ b+x & \textrm{in the morning}\ l & \textrm{all day long} \end{array} \right.$

\begin{displaymath}
\left(\begin{array}{c|c}
1 & 2 \\
\hline
3 & 4
\end{array}\right)
\end{displaymath}


$\left(\begin{array}{c|c} 1 & 2 \ \hline 3 & 4 \end{array}\right)$

\begin{displaymath}
{}^{12}_{\phantom{1}6}\textrm{C}
{}^{12}_{6}\textrm{C}
\end{displaymath}


${}^{12}{\phantom{1}6}\textrm{C} \qquad \textrm{versus} \qquad {}^{12}{6}\textrm{C}$

\begin{displaymath}
\frac{\mathrm{d}f}{\mathrm{d}\theta}=
\mathrm{(\cos \theta, -\sin \theta)}
\left(\begin{array}{cc}
\mathrm{x_1^T}\\
\mathrm{x_2^T}
\end{array} \right)
\mathrm{A}
\mathrm{(x_1, x_2)}
\left(\begin{array}{cc}
\sin \theta\\
\cos \theta
\end{array} \right)
\end{displaymath}


0
0 收藏

0 评论
0 收藏
0