Tensorflow深度学习入门与实战(全新2.0版本)

10/19 09:37
阅读数 52

点击下载:Tensorflow深度学习入门与实战(全新2.0版本)提取码: 3pf7

本课程用通俗易懂的实例,系统讲解了Tensorflow2.0的使用,是目前比较简明易懂、最新最系统的 Tensorflow 2.0 教程,没有之一。

 

TensorFlow™是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief  。

Tensorflow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究  。

TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在内的多个项目以及各类应用程序接口(Application Programming Interface, API) 。

 自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码

轻松地构建模型

TensorFlow 提供多个抽象级别,因此您可以根据自己的需求选择合适的级别。您可以使用高阶 Keras API 构建和训练模型,该 API 让您能够轻松地开始使用 TensorFlow 和机器学习。

如果您需要更高的灵活性,则可以借助即刻执行环境进行快速迭代和直观的调试。对于大型机器学习训练任务,您可以使用 Distribution Strategy API 在不同的硬件配置上进行分布式训练,而无需更改模型定义。

随时随地进行可靠的机器学习生产

TensorFlow 始终提供直接的生产途径。不管是在服务器、边缘设备还是网络上,TensorFlow 都可以助您轻松地训练和部署模型,无论您使用何种语言或平台。

如果您需要完整的生产型机器学习流水线,请使用 TensorFlow Extended (TFX)。要在移动设备和边缘设备上进行推断,请使用 TensorFlow Lite。请使用 TensorFlow.js 在 JavaScript 环境中训练和部署模型。

强大的研究实验

构建和训练先进的模型,并且不会降低速度或性能。借助 Keras Functional API 和 Model Subclassing API 等功能,TensorFlow 可以助您灵活地创建复杂拓扑并实现相关控制。为了轻松地设计原型并快速进行调试,请使用即刻执行环境。

TensorFlow 还支持强大的附加库和模型生态系统以供您开展实验,包括 Ragged Tensors、TensorFlow Probability、Tensor2Tensor 和 BERT。

展开阅读全文
打赏
0
0 收藏
分享
加载中
更多评论
打赏
0 评论
0 收藏
0
分享
返回顶部
顶部