文档章节

numpy移动平均线 布林带 线性模型 趋势线

o
 osc_g8254g7s
发布于 2019/08/19 23:40
字数 1766
阅读 21
收藏 0

精选30+云产品,助力企业轻松上云!>>>

移动平均线

简单移动平均线

关键函数: np.convolve()

简单移动平均线是数列与等权重的指示函数的卷积

import sys
import numpy as np
import matplotlib.pyplot as plt


N = 5
weights = np.ones(N) / N

print("Weights",weights)    #生成等权重的指示函数
# [ 0.2  0.2  0.2  0.2  0.2]

c = np.loadtxt('my.csv',delimiter=',', usecols=(6,), unpack=True)
# 读取my.csv的第6列,是一个一维数组
print(c)

sma = np.convolve(weights,c)[N-1:-N+1]    # 取第5个数据到-5个数据
# convolve的第一个数据为第一天的原值*0.2
# 第二个数据是第二天的原值*0.2加第一天的原值0.2
# 第三个数据是(第三天的原值+第二天的原值+第一天的原值)*0.2
# ...
# 第5天的数据就是前五天的数据的平均值
# 然后之后的每个数据都是这一天到五天后,这五天数据的平均值
# 最后舍掉最后的四天

print(sma)

t = np.arange(N-1,len(c))   # 生成表示时间的数组,作为横坐标
plt.plot(t,c[N-1:],lw=1.0)  # t为横坐标,c[N-1:]作为纵坐标
plt.plot(t,sma,lw=2.0)
# plt.plot第一个参数为x轴,第二个参数为y轴,lw为linewidth线宽
plt.show()
# 显示图表

np.convolve()函数使用详情可参考另一博客:

https://www.cnblogs.com/draven123/p/11370867.html

 

指数移动平均线

关键函数: np.exp()  np.linspace()

指数移动平均线使用的权重是指数衰减的.

对历史上的数据点赋予的权重以指数速度减小,但永远不会到达0

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(5)

# np.exp()函数
print(np.exp(x))    # 生成e关于x的指数
# [  1.      2.71828183   7.3890561   20.08553692  54.59815003]

# np.linspace()函数
print(np.linspace(-1, 0, 5))    # 注意:不是linespace
# [-1.   -0.75 -0.5  -0.25  0.  ]
# 生成从-1到0的数量为5的等差数列

# 生成权重值
N = 5
weights = np.exp(np.linspace(-1, 0, N))
# [ 0.36787944  0.47236655  0.60653066  0.77880078  1.        ]

# 对权重值做归一化处理
weights /= weights.sum()
print(weights)
# [ 0.11405072  0.14644403  0.18803785  0.24144538  0.31002201]

c = np.loadtxt('my.csv', delimiter=',', usecols=(6,), unpack=True)
ema = np.convolve(weights, c)[N-1:-N+1] # 生成的数组长度为len(c) - (N -1)
# 生成的数不是像简单移动平均线那样取当天加上前四天共五天的均值
# 而是按照指数,第一天的比重最低,之后慢慢增加,当天的权重最高
t = np.arange(N-1, len(c))  # 生成x轴

 

布林带

关键函数: np.fill()

布林带用来刻画价格波动的区间. 由三条轨道线组成一个带状通道

上轨: 比简单移动平均线高两倍标准差的举例

中轨: 简单移动平均线

下轨: 比简单移动平均线低两倍标准差

# 这里的标准差是简单移动平均线所用的数据, 计算出来的标准差

import numpy as np
import matplotlib.pyplot as plt

'''
# fill函数的简单介绍
>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([ 1.,  1.])
'''

N = 5
weights = np.ones(N) / N
# 读取文本的第6列
c = np.loadtxt('my.csv', delimiter=',', usecols=(6,), unpack=True)
# 生成简单移动平均线的y值,数组长度为len(c) - (N - 1)
sma = np.convolve(weights, c)[N-1:-N+1]
# sma中的每个值都是c中5个数值的平均值
# sma第一个元素是c中前5个数值的均值,其余类推

deviation = []
C = len(c)

# dev代表当前数和其后的四个数组成的数组
# 最后四个数后没有足够的数组成数组,就都用c的最后五个数代替
for i in range(N - 1, C):
    if i + N < C:
        dev = c[i: i + N] # 长度为N - 1
    else:
        dev = c[-N:]
        
    averages = np.zeros(N)      # 生成N个元素的0矩阵
    averages.fill(sma[i - N - 1])   # 将average全部元素标量成定值
    # fill函数将数组元素的值全部设置为一个指定的标量值
    dev = dev - averages 
    dev = dev ** 2
    dev = np.sqrt(np.mean(dev))
    # 如上3步是计算c中每5个数的标准差
    deviation.append(dev)

deviation = 2 * np.array(deviation)     # 计算2倍标准差 
upperBB = sma + deviation       # 得出上轨
lowerBB = sma - deviation       # 得出下轨

# 生成作为x轴的时间序列
t = np.arange(N -1, C)
plt.plot(t, c[N-1:C], lw=1.0)
plt.plot(t, sma, lw=2.0)
plt.plot(t, upperBB, lw=3.0)
plt.plot(t, lowerBB, lw=4.0)
plt.show()

 

线性模型

Numpy的linalg包是专门做线性代数计算的

import numpy as np
import matplotlib.pyplot as plt

N = 5
weights = np.ones(N) / N

c = np.loadtxt('my.csv', delimiter=',', usecols=(5,), unpack=True)
sma = np.convolve(weights, c)[N-1: -N+1]

b = c[-N:]
b = b[::-1] # 反转原来的b
print(b)
# [ 351.99  346.67  352.47  355.76  355.36]

# 初始化一个N*N的二维数组A, 全部元素为0
A = np.zeros((N,N),float)
print(A)
'''
[[ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]]
'''

# 用b向量中的N个股价值填充数组A
for i in range(N):
    A[i,] = c[- N - 1 - i: -1 - i]
print(A)
'''
[[ 360.    355.36  355.76  352.47  346.67]
 [ 359.56  360.    355.36  355.76  352.47]
 [ 352.12  359.56  360.    355.36  355.76]
 [ 349.31  352.12  359.56  360.    355.36]
 [ 353.21  349.31  352.12  359.56  360.  ]]
'''

# 使用linalg包中的lstsq函数确定线性模型中的系数
(x, residuals, rank, s) = np.linalg.lstsq(A ,b)
print(x, residuals, rank, s)
'''
x: [ 0.78111069 -1.44411737  1.63563225 -0.89905126  0.92009049]
residuals: []
rank: 5
s: [  1.77736601e+03   1.49622969e+01   8.75528492e+00   5.15099261e+00
   1.75199608e+00]
'''
# x是系数向量
# residuals是一个残差数组
# rank是A的秩
# s是A的奇异值
# 奇异值: 设A为m*n阶矩阵,q=min(m,n),A*A的q个非负特征值的算术平方根叫作A的奇异值

# 使用numpy中的dot函数计算点乘
# 点乘就是向量的内积
print(np.dot(b, x))
# 357.939161015
print(np.dot(x, b))
# 357.939161015

 

趋势线

趋势线就是数据随时间序列变化的趋势

# 确定枢轴点的位置
# 本例中使用最高价,最低价和收盘价的算数平均值
h, l, c = np.loadtxt('my.csv', delimiter=',', usecols=(3,4,5), unpack=True)
# h是最高价, l是最低价, c是收盘价
pivots = (h + l + c) / 3
print(pivots)
'''
[ 338.01        337.88666667  343.88666667  344.37333333  342.07666667
  345.57        350.92333333  354.29        357.34333333  354.18
  356.06333333  358.45666667  359.14        362.84333333  358.36333333
  353.19333333  340.57666667  341.95666667  342.13333333  347.13
  353.12666667  350.90333333  351.62333333  358.42333333  359.34666667
  356.11333333  355.13666667  352.61        347.11333333  349.77      ]
'''

# 从枢轴点推导除阻力位和支撑位
# 阻力位: 股价上升时遇到阻力,转跌前的最高价格
# 支撑位: 股价下跌时遇到支撑,反弹前的最低价格

# 定义一个函数y=at+b来拟合数据
# 将直线方程写成y=Ax的形式
def fit_line(t, y):
    A = np.vstack([t, np.ones_like(t)]).T
    return np.linalg.lstsq(A, y)[0]
    
# 假设支撑位在枢轴点下方当日股价区间的位置
# 阻力位在枢轴点上方当日股价区间的位置
t = np.arange(len(c))
sa, sb = fit_line(t, pivots - (h - l))
ra, rb = fit_line(t, pivots + (h - l))
support = sa * t + sb
resistance = ra * t + rb


condition = (c > support) & (c < resistance)
print(condition)
'''
[False False  True  True  True  True  True False False  True False False
 False False False  True False False False  True  True  True  True False
 False  True  True  True False  True]
'''
between_bands = np.where(condition)
'''
(array([ 2,  3,  4,  5,  6,  9, 15, 19, 20, 21, 22, 25, 26, 27, 29]),)
'''

print(support[between_bands])
'''
[ 341.92421382  342.19081893  342.45742405  342.72402917  342.99063429
  343.79044964  345.39008034  346.4565008   346.72310592  346.98971104
  347.25631615  348.0561315   348.32273662  348.58934174  349.12255197]
'''

print(c[between_bands])
'''
[ 345.03  344.32  343.44  346.5   351.88  354.54  350.56  348.16  353.21
  349.31  352.12  355.36  355.76  352.47  351.99]
'''
print(resistance[between_bands])
'''
[ 352.61688271  352.90732765  353.19777259  353.48821753  353.77866246
  354.64999728  356.39266691  357.55444667  357.84489161  358.13533655
  358.42578149  359.2971163   359.58756124  359.87800618  360.45889606]
'''
between_bands = len(np.ravel(between_bands))
# 15

plt.plot(t, c)
plt.plot(t, support)
plt.plot(t, resistance)
plt.show()

 

o
粉丝 0
博文 500
码字总数 0
作品 0
私信 提问
加载中
请先登录后再评论。

暂无文章

设计模式(4) 建造者模式

什么是建造者模式 经典建造者模式的优缺点 对建造者模式的扩展 什么是建造者模式 建造者模式将一个复杂的对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。创建者模式隐藏了...

zhixin9001
30分钟前
14
0
ArrayList源码分析 —— JDK8

ArrayList的特性 ArrayList内部使用数据作为存储结构,ArrayList可以理解为数组的扩展对象,封装了常用的和非常用的操作数组的方法。以及当数组长度不足以保存数组时,自动扩容数组,通常Arr...

XuePeng77
37分钟前
40
0
__slots__的用法? - Usage of __slots__?

问题: Python中__slots__的目的是什么-尤其是关于何时以及何时不使用它的目的? 解决方案: 参考一: https://stackoom.com/question/1ymu/slots-的用法 参考二: https://oldbug.net/q/1ym...

富含淀粉
48分钟前
17
0
Python分析42年高考数据,告诉你高考为什么这么难?

作者:徐麟 历年录取率 可能很多经历过高考的人都不知道高考的全称,高考实际上是普通高等学校招生全国统一考试的简称。从1977年国家恢复高考制度至今,高考经历了许多的改革,其中最为显著的...

爱码小哥
49分钟前
27
0
CKEditor 5 + SpringBoot实战(四):SpringBoot 实现文件上传

在本系列的文章中,我将介绍如何在Spring Boot Application中使用CKEditor编辑器。介绍的内容包括基本环境的搭建,文件上传,SpringData JPA数据持久化,CKEditor5的安装,CKEditor图片上传,...

树下魅狐
51分钟前
20
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部