Differential Evolution
差分进化算法(Differential Evolution,DE)于1997年由Rainer Storn和Kenneth Price在遗传算法等进化思想的基础上提出的,本质是一种多目标(连续变量)优化算法(MOEAs),用于求解多维空间中整体最优解。
差分进化算法相对于遗传算法而言,相同点都是通过随机生成初始种群,以种群中每个个体的适应度值为选择标准,主要过程也都包括变异、交叉和选择三个步骤。不同之处在于遗传算法是根据适应度值来控制父代杂交,变异后产生的子代被选择的概率值,在最大化问题中适应值大的个体被选择的概率相应也会大一些。而差分进化算法变异向量是由父代差分向量生成,并与父代个体向量交叉生成新个体向量,直接与其父代个体进行选择。显然差分进化算法相对遗传算法的逼近效果更加显著。
详细介绍见 差分进化算法(Differential Evolution)。
Quick Start
Step1: 定义你的问题
'''
min f(x1, x2, x3) = x1^2 + x2^2 + x3^2
s.t.
x1*x2 >= 1
x1*x2 <= 5
x2 + x3 = 1
0 <= x1, x2, x3 <= 5
'''
# 目标函数
def obj_func(p):
x1, x2, x3 = p
return x1 ** 2 + x2 ** 2 + x3 ** 2
# 线性约束
constraint_eq = [
lambda x: 1 - x[1] - x[2]
]
# 非线性约束
constraint_ueq = [
lambda x: 1 - x[0] * x[1],
lambda x: x[0] * x[1] - 5
]
Step2: 进行差分进化
from sko.DE import DE
de = DE(func=obj_func, n_dim=3, size_pop=50, max_iter=800, lb=[0, 0, 0], ub=[5, 5, 5],
constraint_eq=constraint_eq, constraint_ueq=constraint_ueq)
best_x, best_y = de.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)
参考链接: