文档章节

matlab学习——05插值和拟合(一维二维插值,拟合)

o
 osc_ogi0qclx
发布于 2019/08/22 19:05
字数 1419
阅读 14
收藏 0

精选30+云产品,助力企业轻松上云!>>>

05插值和拟合

1.一维插值

(1) 机床加工零件,试用分段线性和三次样条两种插值方法计算。并求x=0处的曲线斜率和13<=x<=15范围内y的最小值。

x0=[0 3 5 7 9 11 12 13 14 15];
y0=[0 1.2 1.7 2 2.1 2.0 1.8 1.2 1.0 1.6];
x=0:0.1:15;
% interp1现有插值函数,要求x0单调,'method'有
% nearest 最近项插值   linear 线性插值
% spline 立方样条插值  cubic 立方插值
y1=interp1(x0,y0,x); 

y2=interp1(x0,y0,x,'spline');

pp1=csape(x0,y0);
y3=fnval(pp1,x);

pp2=csape(x0,y0,'second');
y4=fnval(pp2,x);

[x',y1',y2',y3',y4']

subplot(1,4,1)
plot(x0,y0,'+',x,y1)
title('Piecewise linear 分段线性')

subplot(1,4,2)
plot(x0,y0,'+',x,y2)
title('spline1')

subplot(1,4,3)
plot(x0,y0,'+',x,y3)
title('spline2')

subplot(1,4,4)
plot(x0,y0,'+',x,y4)
title('second')

dx=diff(x);
dy=diff(y3);
dy_dx=dy./dx;
dy_dx0=dy_dx(1);
ytemp=y3(131:151);
ymin=min(ytemp);
index=find(y3==ymin);
xmin=x(index);
[xmin,ymin]

 

(2)  已知速度的四个观测值,用三次样条求位移S=0.15到0.18上的vd(t)积分

t   0.15    0.16     0.17    0.18
vt   3.5    1.5       2.5       2.8

format compact;
% 已知速度的四个观测值,用三次样条求位移S=0.15到0.18上的vd(t)积分
% t   0.15  0.16  0.17  0.18
% vt  3.5   1.5    2.5   2.8
clc,clear
x0=0.15:0.01:0.18;
y0=[3.5 1.5 2.5 2.8];
% csape 三次样条插值,返回要求插值的的函数值
pp=csape(x0,y0) % 默认的边界条件,Lagrange边界条件
format long g
xishu = pp.coefs % 显示每个区间上三次多项式的系数
s=quadl(@(t)ppval(pp,t),0.15,0.18) % 求积分
format % 恢复短小数的显示格式

% 画图
t=0.15:0.001:0.18;
y=fnval(pp,t);
plot(x0,y0,'+',t,y)

pp = 
  包含以下字段的 struct:

      form: 'pp'
    breaks: [0.1500 0.1600 0.1700 0.1800]
     coefs: [3×4 double]
    pieces: 3
     order: 4
       dim: 1
xishu =
  1 至 2-616666.666666667                     33500
         -616666.666666667                     15000
         -616666.666666668         -3499.99999999999
  3 至 4-473.333333333334                       3.5
          11.6666666666671                       1.5
          126.666666666667                       2.5
s =
                  0.068625

 

2.二维插值

(1) 丘陵测量高度。试插值一曲面,确定合适的模型,并由此找出最高的和该点的最高程。

format compact;
% 丘陵,在x,y方向上每隔100m测个点
clear,clc
x=100:100:500;
y=100:100:400;
z=[636 697 624 478 450
    698 712 630 478 420
    680 674 598 412 400
    662 626 552 334 310];

pp=csape({x,y},z') % 三次样条,返回函数
xi=100:10:500;
yi=100:10:400;
cz=fnval(pp,{xi,yi}); % 得到插值后的z

[i,j]=find(cz==max(max(cz))) % 找最高点的地址
xm=xi(i),ym=yi(i),zmax=cz(i,j) % 求最高点的坐标

% 画图
[X,Y]=meshgrid(yi,xi);%构造1×1网格,20×20个
[X0,Y0]=meshgrid(y,x);%构造1×1网格,20×20个 
plot3(X0,Y0,z,'p', 'MarkerEdgeColor','k','MarkerSize',15 ,'MarkerFaceColor',[.49 1 .63])
hold on
% mesh(X,Y,cz)
surf(X,Y,cz)
pp = 
  包含以下字段的 struct:

      form: 'pp'
    breaks: {[100 200 300 400 500]  [100 200 300 400]}
     coefs: [1×16×12 double]
    pieces: [4 3]
     order: [4 4]
       dim: 1
i =
     8
j =
     9
xm =
   170
ym =
   170
zmax =
  720.6252

 

(2) 海底水深

format compact;
% 二维海底水深数据
clc,clear;
x=[129,140,103.5,88,185.5,195,105,157.5,107.5,77,81,162,162,117.5];
y=[7.5,141.5,23,147,22.5,137.5,85.5,-6.5,-81,3,56.5,-66.5,84,-33.5];
z=-[4,8,6,8,6,8,8,9,9,8,8,9,4,9]
xmm=minmax(x); % 求x的最大值和最小值
ymm=minmax(y); % 求y的最大值和最小值
xi=xmm(1):xmm(2);
yi=ymm(1):ymm(2);
zi1=griddata(x,y,z,xi,yi','cubic'); % 立方插值
zi2=griddata(x,y,z,xi,yi','nearest'); % 最近点插值
zi=zi1 %立方插值和最近点插值的混合插值的初始值
zi(isnan(zi1)) = zi2(isnan(zi1)); % 把立方插值中的不确定值缓存最近点插值的结果
subplot(1,2,1),plot(x,y,'*');
subplot(1,2,2),mesh(xi,yi,zi);

 

 

3.拟合

(1) 最小二乘拟合

x=[19     25    31     38    44]';
y=[19.0   32.3   49.0   73.3   97.8]';
r=[ones(5,1),x.^2]
ab=r\y
x0=19:0.1:44;
y0=ab(1)+ab(2)*x0.^2;
plot(x,y,'o',x0,y0,'r')
%   y = 0.9726 +   0.0500*x^2

 

(2) 多项式拟合

x0=[1990  1991  1992  1993  1994  1995  1996];
y0=[70   122   144   152   174   196   202];
plot(x0,y0,'*')
a=polyfit(x0,y0,1)
y97=polyval(a,1997) % 拟合的多项式在1997处的值
y98=polyval(a,1998)

 

(3) 最小二乘优化lsqlin函数

x=[19     25    31     38    44]';
y=[19.0   32.3   49.0   73.3   97.8]';
r=[ones(5,1),x.^2];
ab=lsqlin(r,y)
x0=19:0.1:44;
y0=ab(1)+ab(2)*x0.^2;
plot(x,y,'o',x0,y0,'r')

 

 (4) 最小二乘优化lsqcurvefit函数,拟合函数中的参数

fun1.m

function f=fun1(canshu,xdata);
f= exp(-canshu(1)*xdata(:,1)).*sin(canshu(2)*xdata(:,2))+xdata(:,3).^2;  %其中canshu(1)=k1,canshu(2)=k2,注意函数中自变量的形式

data1.txt

1	15.02	23.73	5.49	1.21	14	15.94	23.52	5.18	1.98
2	12.62	22.34	4.32	1.35	15	14.33	21.86	4.86	1.59
3	14.86	28.84	5.04	1.92	16	15.11	28.95	5.18	1.37
4	13.98	27.67	4.72	1.49	17	13.81	24.53	4.88	1.39
5	15.91	20.83	5.35	1.56	18	15.58	27.65	5.02	1.66
6	12.47	22.27	4.27	1.50	19	15.85	27.29	5.55	1.70
7	15.80	27.57	5.25	1.85	20	15.28	29.07	5.26	1.82
8	14.32	28.01	4.62	1.51	21	16.40	32.47	5.18	1.75
9	13.76	24.79	4.42	1.46	22	15.02	29.65	5.08	1.70
10	15.18	28.96	5.30	1.66	23	15.73	22.11	4.90	1.81
11	14.20	25.77	4.87	1.64	24	14.75	22.43	4.65	1.82
12	17.07	23.17	5.80	1.90	25	14.35	20.04	5.08	1.53
13	15.40	28.57	5.22	1.66

主函数

% 拟合函数y=e^(-k1*x1)*sin(k2*x2)+x3*3中的参数k1,k2
clc, clear
a=textread('data1.txt');
y0=a(:,[2,7]); %提出因变量y的数据
y0=nonzeros(y0); %去掉最后的零元素,且变成列向量
x0=[a(:,[3:5]);a([1:end-1],[8:10])]; %由分块矩阵构造因变量数据的2列矩阵
canshu0=rand(2,1); %拟合参数的初始值是任意取的
%非线性拟合的答案是不唯一的,下面给出拟合参数的上下界,
lb=zeros(2,1); %这里是随意给的拟合参数的下界,无下界时,默认值是空矩阵[]
ub=[20;2]; %这里是随意给的上界,无上界时,默认值是空矩阵[]
canshu=lsqcurvefit(@fun1,canshu0,x0,y0,lb,ub)
Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

<stopping criteria details>


canshu =

    0.0000
    1.5483

 

o
粉丝 0
博文 500
码字总数 0
作品 0
私信 提问
加载中
请先登录后再评论。

暂无文章

如何防止单击按钮时对话框关闭 - How to prevent a dialog from closing when a button is clicked

问题: I have a dialog with EditText for input. 我有一个使用EditText输入的对话框。 When I click the "yes" button on dialog, it will validate the input and then close the dialog.......

富含淀粉
37分钟前
7
0
访问者模式Visitor

一 概述 场景:通常来说,用于封装数据所用到的pojo类,其只包含get、set,对应的业务逻辑是在Service上完成的;但如果出现多个pojo类都共用一套逻辑时,则应该考虑将逻辑进行抽象,不同类型...

小明不觉小
今天
5
0
jQuery Ajax错误处理,显示自定义异常消息 - jQuery Ajax error handling, show custom exception messages

问题: Is there some way I can show custom exception messages as an alert in my jQuery AJAX error message? 有没有什么方法可以在我的jQuery AJAX错误消息中显示自定义异常消息作为警报...

法国红酒甜
今天
28
0
告别传统机房:3D 机房数据可视化实现智能化与VR技术的新碰撞

前言 随着各行业对计算机依赖性的日益提高,计算机信息系统的发展使得作为其网络设备、主机服务器、数据存储设备、网络安全设备等核心设备存放地的计算机机房日益显现出它的重要地位,而机房...

xhload3d
昨天
51
0
spring源码解析-xml配置文件读取

整个 XML配置文件读取的大致流程如下: 通过继承自AbstractBeanDefinitionReader中的方法,来使用ResourLoader将资源文件路径转换为对应的Resource文件(读取资源文件并将其转为Resource) ...

wc_飞豆
昨天
22
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部