case
关于中移物联网
从 2.0 到 3.0
智慧出行是中移物联网的一个非常典型的场景,我们需要存储车联网设备的轨迹点,还要支持对轨迹进行查询。最初我们使用的是 Oracle 小型机单表分区存储数据,运维复杂不便管理。2017 年,响应集团去 IOE 的要求,该项目开始使用 MySQL 集群。2019 年,产品提出了更高的数据存储需求,我们又开始调研国产数据库 TiDB,但由于其存储成本过高,不适合轨迹存储这种低价值的数据,而且不能解决行业客户轨迹数据存储周期定制化的需要,因此我们开始继续调研新的存储方案——国产开源时序数据库 (Time Series Database)TDengine 就是这个时候进入了我们的视野。
高频写入,每天写入约两亿条轨迹数据;
低频查询,通常是由用户触发,查询最近几天的轨迹;
企业用户有定制轨迹存储周期的需求;
不针对 OLAP 需求,数据价值密度低。

Raft 协议的引入使 TDengine 拥有了更标准的一致性算法
存储引擎的重构优化了 2.x 版本的设计
查询灵活度大幅提升,可实现的需求变得多元化
支持更强大的流式计算
3.0 使用体验
TDengine 3.0 的安装部署上保留了和 2.0 一样的简单易用模式,升级操作只需要备份数据文件目录,覆盖安装即可,而且写入速度极高,接近硬盘的连续写入性能。TDengine 的高效压缩算法,可以节省大量存储空间,SQL 使用也非常简单。在此前对 MySQL 方案的替换中,我们的存储空间降为原来的 1/7,可以看到,在节省存储空间方面,TDengine 的优势极为明显。
3.0 建模设计
create stable device_statushis ( pos_time TIMESTAMP, sample_time TIMESTAMP, record_time TIMESTAMP, online_status SMALLINT, alarm_status SMALLINT, pos_method SMALLINT, pos_precision SMALLINT, pos_longitude DOUBLE, pos_latitude DOUBLE, pos_altitude DOUBLE, pos_speed FLOAT, pos_direction FLOAT, acc_forward FLOAT, acc_side FLOAT, acc_verticle FLOAT, rollover_level SMALLINT, power_voltage FLOAT, acc_status SMALLINT, satellite_num SMALLINT ) tags( device_id BINARY(32) ) ;
CREATE STABLE `emg_info` (`pos_time` TIMESTAMP, `sample_time` TIMESTAMP, `record_time` TIMESTAMP, `duration` SMALLINT, `mid_interval` SMALLINT, `mid_number` SMALLINT, `pre_number` SMALLINT, `pre_interval` SMALLINT, `start_time` TIMESTAMP, `end_time` TIMESTAMP, `start_lat` DOUBLE, `end_lat` DOUBLE, `start_lng` DOUBLE, `end_lng` DOUBLE, `event_type` SMALLINT, `sample_info` NCHAR(2048), `parameter_type` NCHAR(10)) TAGS (`device_id` VARCHAR(32), `app_code` NCHAR(32));
CREATE STABLE `gps_info` (`pos_time` TIMESTAMP, `sample_time` TIMESTAMP, `record_time` TIMESTAMP, `online_status` SMALLINT, `alarm_status` SMALLINT, `pos_method` SMALLINT, `pos_precision` SMALLINT, `pos_longitude` DOUBLE, `pos_latitude` DOUBLE, `pos_altitude` DOUBLE, `pos_speed` FLOAT, `pos_direction` FLOAT, `acc_forward` FLOAT, `acc_side` FLOAT, `acc_verticle` FLOAT, `rollover_level` SMALLINT, `power_voltage` FLOAT, `acc_status` SMALLINT, `satellite_num` SMALLINT) TAGS (`device_id` VARCHAR(32), `app_code` NCHAR(32), `device_hash` INT);
CREATE STABLE `can_info` (`pos_time` TIMESTAMP, `sample_time` TIMESTAMP, `record_time` TIMESTAMP, `gas_pedal_position` FLOAT, `spark_angle` FLOAT, `total_fuel_consumption` INT, `storage_battery_voltage` FLOAT, `latest_engine_runtime` INT, `fuel_pressure` INT, `distance_after_mil` INT, `long_term_fuel_trim` FLOAT, `engine_rpm` INT, `intake_manifold_pressure` SMALLINT, `distance_total` INT, `engine_inlet_port_temp` SMALLINT, `calcu_load` TINYINT, `vehicle_speed` SMALLINT, `fuel_type` NCHAR(30), `area_code` INT) TAGS (`device_id` VARCHAR(32), `app_code` NCHAR(32));
未来展望
最后,祝 TDengine 越来越好,最终成为时序数据库的事实标准。
作者介绍|PROFILE
薛超,中移物联网数据库运维高级工程师,10 年数据库运维经历,2017 年加入中移物联网,负责智能硬件产品部数据库相关工作,专注于数据库优化和推动架构演进;近年来主要研究国产新型数据库,目前所在部门全部业务已经去“O”,在此过程中,积累了大量新型数据库的运维经验。
往期推荐




本文分享自微信公众号 - TDengine(taosdata_news)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。