ElasticSearch - 批量更新bulk死锁问题排查

2023/07/12 18:00
阅读数 276




一、问题系统介绍


  1. 监听商品变更MQ消息,查询商品最新的信息,调用BulkProcessor批量更新ES集群中的商品字段信息;

  2. 由于商品数据非常多,所以将商品数据存储到ES集群上,整个ES集群共划分了256个分片,并根据商品的三级类目ID进行分片路由。

比如一个SKU的商品名称发生变化,我们就会收到这个SKU的变更MQ消息,然后再去查询商品接口,将商品的最新名称查询回来,再根据这个SKU的三级分类ID进行路由,找到对应的ES集群分片,然后更新商品名称字段信息。

由于商品变更MQ消息量巨大,为了提升更新ES的性能,防止出现MQ消息积压问题,所以本系统使用了BulkProcessor进行批量异步更新。

ES客户端版本如下:

 <dependency>     <artifactId>elasticsearch-rest-client</artifactId>     <groupId>org.elasticsearch.client</groupId>     <version>6.5.3</version> </dependency>

BulkProcessor配置伪代码如下:

//在这里调用build()方法构造bulkProcessor,在底层实际上是用了bulk的异步操作 this.fullDataBulkProcessor = BulkProcessor.builder((request, bulkListener) ->      fullDataEsClient.getClient().bulkAsync(request, RequestOptions.DEFAULT, bulkListener), listener)      // 1000条数据请求执行一次bulk      .setBulkActions(1000)      // 5mb的数据刷新一次bulk      .setBulkSize(new ByteSizeValue(5L, ByteSizeUnit.MB))      // 并发请求数量, 0不并发, 1并发允许执行      .setConcurrentRequests(1)      // 固定1s必须刷新一次      .setFlushInterval(TimeValue.timeValueSeconds(1L))      // 重试5次,间隔1s      .setBackoffPolicy(BackoffPolicy.constantBackoff(TimeValue.timeValueSeconds(1L), 5))      .build();


二、问题怎么发现的


  1. 618大促开始后,由于商品变更MQ消息非常频繁,MQ消息每天的消息量更是达到了日常的数倍,而且好多商品还变更了三级类目ID;

  2. 系统在更新这些三级类目ID发生变化的SKU商品信息时,根据修改后的三级类目ID路由后的分片更新商品信息时发生了错误,并且重试了5次,依然没有成功;

  3. 因为在新路由的分片上没有这个商品的索引信息,这些更新请求永远也不会执行成功,系统的日志文件中也记录了大量的异常重试日志。

  4. 商品变更MQ消息也开始出现了积压报警,MQ消息的消费速度明显赶不上生产速度。

  5. 观察MQ消息消费者的UMP监控数据,发现消费性能很平稳,没有明显波动,但是调用次数会在系统消费MQ一段时间后出现断崖式下降,由原来的每分钟几万调用量逐渐下降到个位数。

  6. 在重启应用后,系统又开始消费,UMP监控调用次数恢复到正常水平,但是系统运行一段时间后,还是会出现消费暂停问题,仿佛所有消费线程都被暂停了一样。



三、排查问题的详细过程


首先找一台暂停消费MQ消息的容器,查看应用进程ID,使用jstack命令dump应用进程的整个线程堆栈信息,将导出的线程堆栈信息打包上传到 https://fastthread.io/ 进行线程状态分析。分析报告如下:

通过分析报告发现有124个处于BLOCKED状态的线程,然后可以点击查看各线程的详细堆栈信息,堆栈信息如下:

连续查看多个线程的详细堆栈信息,MQ消费线程都是在waiting to lock <0x00000005eb781b10> (a org.elasticsearch.action.bulk.BulkProcessor),然后根据0x00000005eb781b10去搜索发现,这个对象锁正在被另外一个线程占用,占用线程堆栈信息如下:

这个线程状态此时正处于WAITING状态,通过线程名称发现,该线程应该是ES客户端内部线程。正是该线程抢占了业务线程的锁,然后又在等待其他条件触发该线程执行,所以导致了所有的MQ消费业务线程一直无法获取BulkProcessor内部的锁,导致出现了消费暂停问题。

但是这个线程elasticsearch[scheduler][T#1]为啥不能执行?它是什么时候启动的?又有什么作用?

就需要我们对BulkProcessor进行深入分析,由于BulkProcessor是通过builder模块进行创建的,所以深入builder源码,了解一下BulkProcessor的创建过程。

  
  
  
public static Builder builder(BiConsumer<BulkRequest, ActionListener<BulkResponse>> consumer, Listener listener) {        Objects.requireNonNull(consumer, "consumer");        Objects.requireNonNull(listener, "listener");        final ScheduledThreadPoolExecutor scheduledThreadPoolExecutor = Scheduler.initScheduler(Settings.EMPTY);        return new Builder(consumer, listener,                (delay, executor, command) -> scheduledThreadPoolExecutor.schedule(command, delay.millis(), TimeUnit.MILLISECONDS),                () -> Scheduler.terminate(scheduledThreadPoolExecutor, 10, TimeUnit.SECONDS));    }

内部创建了一个时间调度执行线程池,线程命名规则和上述持有锁的线程名称相似,具体代码如下:

static ScheduledThreadPoolExecutor initScheduler(Settings settings) {        ScheduledThreadPoolExecutor scheduler = new ScheduledThreadPoolExecutor(1,                EsExecutors.daemonThreadFactory(settings, "scheduler"), new EsAbortPolicy());        scheduler.setExecuteExistingDelayedTasksAfterShutdownPolicy(false);        scheduler.setContinueExistingPeriodicTasksAfterShutdownPolicy(false);        scheduler.setRemoveOnCancelPolicy(true);        return scheduler;    }

最后在build方法内部执行了BulkProcessor的内部有参构造方法,在构造方法内部启动了一个周期性执行的flushing任务,代码如下

 BulkProcessor(BiConsumer<BulkRequest, ActionListener<BulkResponse>> consumer, BackoffPolicy backoffPolicy, Listener listener,                  int concurrentRequests, int bulkActions, ByteSizeValue bulkSize, @Nullable TimeValue flushInterval,                  Scheduler scheduler, Runnable onClose) {        this.bulkActions = bulkActions;        this.bulkSize = bulkSize.getBytes();        this.bulkRequest = new BulkRequest();        this.scheduler = scheduler;        this.bulkRequestHandler = new BulkRequestHandler(consumer, backoffPolicy, listener, scheduler, concurrentRequests);        // Start period flushing task after everything is setup        this.cancellableFlushTask = startFlushTask(flushInterval, scheduler);        this.onClose = onClose;    }
private Scheduler.Cancellable startFlushTask(TimeValue flushInterval, Scheduler scheduler) {        if (flushInterval == null) {            return new Scheduler.Cancellable() {                @Override                public void cancel() {}
@Override public boolean isCancelled() { return true; } }; } final Runnable flushRunnable = scheduler.preserveContext(new Flush()); return scheduler.scheduleWithFixedDelay(flushRunnable, flushInterval, ThreadPool.Names.GENERIC); }
class Flush implements Runnable {
@Override public void run() { synchronized (BulkProcessor.this) { if (closed) { return; } if (bulkRequest.numberOfActions() == 0) { return; } execute(); } } }

通过源代码发现,该flush任务就是在创建BulkProcessor对象时设置的固定时间flush逻辑,当setFlushInterval方法参数生效,就会启动一个后台定时flush任务。flush间隔,由setFlushInterval方法参数定义。该flush任务在运行期间,也会抢占BulkProcessor对象锁,抢到锁后,才会执行execute方法。具体的方法调用关系源代码如下:

/**     * Adds the data from the bytes to be processed by the bulk processor     */    public synchronized BulkProcessor add(BytesReference data, @Nullable String defaultIndex, @Nullable String defaultType,                                          @Nullable String defaultPipeline, @Nullable Object payload, XContentType xContentType) throws Exception {        bulkRequest.add(data, defaultIndex, defaultType, null, null, null, defaultPipeline, payload, true, xContentType);        executeIfNeeded();        return this;    }
private void executeIfNeeded() { ensureOpen(); if (!isOverTheLimit()) { return; } execute(); }
// (currently) needs to be executed under a lock private void execute() { final BulkRequest bulkRequest = this.bulkRequest; final long executionId = executionIdGen.incrementAndGet();
this.bulkRequest = new BulkRequest(); this.bulkRequestHandler.execute(bulkRequest, executionId); }

而上述代码中的add方法,则是由MQ消费业务线程去调用,在该方法上同样有一个synchronized关键字,所以消费MQ业务线程会和flush任务执行线程直接会存在锁竞争关系。具体MQ消费业务线程调用伪代码如下:

@Override public void upsertCommonSku(CommonSkuEntity commonSkuEntity) {            String source = JsonUtil.toString(commonSkuEntity);            UpdateRequest updateRequest = new UpdateRequest(Constants.INDEX_NAME_SPU, Constants.INDEX_TYPE, commonSkuEntity.getSkuId().toString());            updateRequest.doc(source, XContentType.JSON);            IndexRequest indexRequest = new IndexRequest(Constants.INDEX_NAME_SPU, Constants.INDEX_TYPE, commonSkuEntity.getSkuId().toString());            indexRequest.source(source, XContentType.JSON);            updateRequest.upsert(indexRequest);            updateRequest.routing(commonSkuEntity.getCat3().toString());            fullbulkProcessor.add(updateRequest);}  

通过以上对线程堆栈分析,发现所有的业务线程都在等待elasticsearch[scheduler][T#1]线程释放BulkProcessor对象锁,但是该线程确一直没有释放该对象锁,从而出现了业务线程的死锁问题。

结合应用日志文件中出现的大量异常重试日志,可能与BulkProcessor的异常重试策略有关,然后进一步了解BulkProcessor的异常重试代码逻辑。由于业务线程中提交BulkRequest请求都统一提交到了BulkRequestHandler对象中的execute方法内部进行处理,代码如下:

  
  
  
public final class BulkRequestHandler {    private final Logger logger;    private final BiConsumer<BulkRequest, ActionListener<BulkResponse>> consumer;    private final BulkProcessor.Listener listener;    private final Semaphore semaphore;    private final Retry retry;    private final int concurrentRequests;
BulkRequestHandler(BiConsumer<BulkRequest, ActionListener<BulkResponse>> consumer, BackoffPolicy backoffPolicy, BulkProcessor.Listener listener, Scheduler scheduler, int concurrentRequests) { assert concurrentRequests >= 0; this.logger = Loggers.getLogger(getClass()); this.consumer = consumer; this.listener = listener; this.concurrentRequests = concurrentRequests; this.retry = new Retry(backoffPolicy, scheduler); this.semaphore = new Semaphore(concurrentRequests > 0 ? concurrentRequests : 1); }
public void execute(BulkRequest bulkRequest, long executionId) { Runnable toRelease = () -> {}; boolean bulkRequestSetupSuccessful = false; try { listener.beforeBulk(executionId, bulkRequest); semaphore.acquire(); toRelease = semaphore::release; CountDownLatch latch = new CountDownLatch(1); retry.withBackoff(consumer, bulkRequest, new ActionListener<BulkResponse>() { @Override public void onResponse(BulkResponse response) { try { listener.afterBulk(executionId, bulkRequest, response); } finally { semaphore.release(); latch.countDown(); } }
@Override public void onFailure(Exception e) { try { listener.afterBulk(executionId, bulkRequest, e); } finally { semaphore.release(); latch.countDown(); } } }); bulkRequestSetupSuccessful = true; if (concurrentRequests == 0) { latch.await(); } } catch (InterruptedException e) { Thread.currentThread().interrupt(); logger.info(() -> new ParameterizedMessage("Bulk request {} has been cancelled.", executionId), e); listener.afterBulk(executionId, bulkRequest, e); } catch (Exception e) { logger.warn(() -> new ParameterizedMessage("Failed to execute bulk request {}.", executionId), e); listener.afterBulk(executionId, bulkRequest, e); } finally { if (bulkRequestSetupSuccessful == false) { // if we fail on client.bulk() release the semaphore toRelease.run(); } } }
boolean awaitClose(long timeout, TimeUnit unit) throws InterruptedException { if (semaphore.tryAcquire(this.concurrentRequests, timeout, unit)) { semaphore.release(this.concurrentRequests); return true; } return false; }}

BulkRequestHandler通过构造方法初始化了一个Retry任务对象,该对象中也传入了一个Scheduler,且该对象和flush任务中传入的是同一个线程池,该线程池内部只维护了一个固定线程。而execute方法首先会先根据Semaphore来控制并发执行数量,该并发数量在构建BulkProcessor时通过参数指定,通过上述配置发现该值配置为1。所以每次只允许一个线程执行该方法。即MQ消费业务线程和flush任务线程,同一时间只能有一个线程可以执行。然后下面再了解一下重试任务是如何执行的,具体看如下代码:

public void withBackoff(BiConsumer<BulkRequest, ActionListener<BulkResponse>> consumer, BulkRequest bulkRequest,                            ActionListener<BulkResponse> listener) {        RetryHandler r = new RetryHandler(backoffPolicy, consumer, listener, scheduler);        r.execute(bulkRequest);    }

RetryHandler内部会执行提交bulkRequest请求,同时也会监听bulkRequest执行异常状态,然后执行任务重试逻辑,重试代码如下:

  
  
  
private void retry(BulkRequest bulkRequestForRetry) {            assert backoff.hasNext();            TimeValue next = backoff.next();            logger.trace("Retry of bulk request scheduled in {} ms.", next.millis());            Runnable command = scheduler.preserveContext(() -> this.execute(bulkRequestForRetry));            scheduledRequestFuture = scheduler.schedule(next, ThreadPool.Names.SAME, command);        }

RetryHandler将执行失败的bulk请求重新交给了内部scheduler线程池去执行,通过以上代码了解,该线程池内部只维护了一个固定线程,同时该线程池可能还会被另一个flush任务去占用执行。所以如果重试逻辑正在执行的时候,此时线程池内的唯一线程正在执行flush任务,则会阻塞重试逻辑执行,重试逻辑不能执行完成,则不会释放Semaphore,但是由于并发数量配置的是1,所以flush任务线程需要等待其他线程释放一个Semaphore许可后才能继续执行。所以此处形成了循环等待,导致Semaphore和BulkProcessor对象锁都无法释放,从而使得所有的MQ消费业务线程都阻塞在获取BulkProcessor锁之前。

同时,在GitHub的ES客户端源码客户端上也能搜索到类似问题,例如:https://github.com/elastic/elasticsearch/issues/47599 ,所以更加印证了之前的猜想,就是因为bulk的不断重试从而引发了BulkProcessor内部的死锁问题。



四、如何解决问题


既然前边已经了解到了问题产生的原因,所以就有了如下几种解决方案:

  1. 升级ES客户端版本到7.6正式版,后续版本通过将异常重试任务线程池和flush任务线程池进行了物理隔离,从而避免了线程池的竞争,但是需要考虑版本兼容性。

  2. 由于该死锁问题是由大量异常重试逻辑引起的,可以在不影响业务逻辑的情况取消重试逻辑,该方案可以不需要升级客户端版本,但是需要评估业务影响,执行失败的请求可以通过其他其他方式进行业务重试。

如有疏漏不妥之处,欢迎指正!

-end-

本文分享自微信公众号 - 京东云开发者(JDT_Developers)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

展开阅读全文
加载中
点击引领话题📣 发布并加入讨论🔥
0 评论
0 收藏
0
分享
返回顶部
顶部