文档章节

Python 中如何实现参数化测试?

豌豆花下猫
 豌豆花下猫
发布于 2019/12/09 22:06
字数 1806
阅读 536
收藏 4

之前,我曾转过一个单元测试框架系列的文章,里面介绍了 unittest、nose/nose2 与 pytest 这三个最受人欢迎的 Python 测试框架。

本文想针对测试中一种很常见的测试场景,即参数化测试,继续聊聊关于测试的话题,并尝试将这几个测试框架串联起来,做一个横向的比对,加深理解。

1、什么是参数化测试?

对于普通测试来说,一个测试方法只需要运行一遍,而参数化测试对于一个测试方法,可能需要传入一系列参数,然后进行多次测试。

比如,我们要测试某个系统的登录功能,就可能要分别传入不同的用户名与密码,进行测试:使用包含非法字符的用户名、使用未注册的用户名、使用超长的用户名、使用错误的密码、使用合理的数据等等。

参数化测试是一种“数据驱动测试”(Data-Driven Test),在同一个方法上测试不同的参数,以覆盖所有可能的预期分支的结果。它的测试数据可以与测试行为分离,被放入文件、数据库或者外部介质中,再由测试程序读取。

2、参数化测试的实现思路?

通常而言,一个测试方法就是一个最小的测试单元,其功能应该尽量地原子化和单一化。

先来看看两种实现参数化测试的思路:一种是写一个测试方法,在其内部对所有测试参数进行遍历;另一种是在测试方法之外写遍历参数的逻辑,然后依次调用该测试方法。

这两种思路都能达到测试目的,在简单业务中,没有毛病。然而,实际上它们都只有一个测试单元,在统计测试用例数情况,或者生成测试报告的时候,并不乐观。可扩展性也是个问题。

那么,现有的测试框架是如何解决这个问题的呢?

它们都借助了装饰器,主要的思路是:利用原测试方法(例如 test()),来生成多个新的测试方法(例如 test1()、test2()……),并将参数依次赋值给它们。

由于测试框架们通常把一个测试单元统计为一个“test”,所以这种“由一生多”的思路相比前面的两种思路,在统计测试结果时,就具有很大的优势。

3、参数化测试的使用方法?

Python 标准库中的unittest 自身不支持参数化测试,为了解决这个问题,有人专门开发了两个库:一个是ddt ,一个是parameterized

ddt 正好是“Data-Driven Tests”(数据驱动测试)的缩写。典型用法:

import unittest
from ddt import ddt,data,unpack

@ddt
class MyTest(unittest.TestCase):
    @data((3, 1), (-1, 0), (1.2, 1.0))
    @unpack
    def test_values(self, first, second):
        self.assertTrue(first > second)

unittest.main(verbosity=2)

运行的结果如下:

test_values_1__3__1_ (__main__.MyTest) ... ok
test_values_2___1__0_ (__main__.MyTest) ... FAIL
test_values_3__1_2__1_0_ (__main__.MyTest) ... ok

==================================================
FAIL: test_values_2___1__0_ (__main__.MyTest)
--------------------------------------------------
Traceback (most recent call last):
  File "C:\Python36\lib\site-packages\ddt.py", line 145, in wrapper
    return func(self, *args, **kwargs)
  File "C:/Users/pythoncat/PycharmProjects/study/testparam.py", line 9, in test_values
    self.assertTrue(first > second)
AssertionError: False is not true

----------------------------------------------
Ran 3 tests in 0.001s

FAILED (failures=1)

结果显示有 3 个 tests,并详细展示了运行状态以及断言失败的信息。

需要注意的是,这 3 个 test 分别有一个名字,名字中还携带了其参数的信息,而原来的 test_values 方法则不见了,已经被一拆为三。

在上述例子中,ddt 库使用了三个装饰器(@ddt、@data、@unpack),实在是很丑陋。下面看看相对更好用的 parameterized 库:

import unittest
from parameterized import parameterized

class MyTest(unittest.TestCase):
    @parameterized.expand([(3,1), (-1,0), (1.5,1.0)])
    def test_values(self, first, second):
        self.assertTrue(first > second)

unittest.main(verbosity=2) 

测试结果如下:

test_values_0 (__main__.MyTest) ... ok
test_values_1 (__main__.MyTest) ... FAIL
test_values_2 (__main__.MyTest) ... ok

=========================================
FAIL: test_values_1 (__main__.MyTest)
-----------------------------------------
Traceback (most recent call last):
  File "C:\Python36\lib\site-packages\parameterized\parameterized.py", line 518, in standalone_func
    return func(*(a + p.args), **p.kwargs)
  File "C:/Users/pythoncat/PycharmProjects/study/testparam.py", line 7, in test_values
    self.assertTrue(first > second)
AssertionError: False is not true

----------------------------------------
Ran 3 tests in 0.000s

FAILED (failures=1)

这个库只用了一个装饰器 @parameterized.expand,写法上可就清爽多了。

同样提醒下,原来的测试方法已经消失了,取而代之的是三个新的测试方法,只是新方法的命名规则与 ddt 的例子不同罢了。

介绍完 unittest,接着看已经死翘翘了的nose 以及新生的nose2 。nose 系框架是带了插件(plugins)的 unittest,以上的用法是相通的。

另外,nose2 中还提供了自带的参数化实现:

import unittest
from nose2.tools import params

@params(1, 2, 3)
def test_nums(num):
    assert num < 4

class Test(unittest.TestCase):
    @params((1, 2), (2, 3), (4, 5))
    def test_less_than(self, a, b):
    assert a < b

最后,再来看下 pytest 框架,它这样实现参数化测试:

import pytest

@pytest.mark.parametrize("first,second", [(3,1), (-1,0), (1.5,1.0)])
def test_values(first, second):
    assert(first > second)

测试结果如下:

==================== test session starts ====================
platform win32 -- Python 3.6.1, pytest-5.3.1, py-1.8.0, pluggy-0.13.1
rootdir: C:\Users\pythoncat\PycharmProjects\study collected 3 items

testparam.py .F
testparam.py:3 (test_values[-1-0])
first = -1, second = 0

    @pytest.mark.parametrize("first,second", [(3,1), (-1,0), (1.5,1.0)])
    def test_values(first, second):
>       assert(first > second)
E       assert -1 > 0

testparam.py:6: AssertionError
.                                                         [100%]

========================= FAILURES ==========================
_________________________ test_values[-1-0] _________________________

first = -1, second = 0

    @pytest.mark.parametrize("first,second", [(3,1), (-1,0), (1.5,1.0)])
    def test_values(first, second):
>       assert(first > second)
E       assert -1 > 0

testparam.py:6: AssertionError
===================== 1 failed, 2 passed in 0.08s =====================
Process finished with exit code 0

依然要提醒大伙注意,pytest 也做到了由一变三,然而我们却看不到有新命名的方法的信息。这是否意味着它并没有产生新的测试方法呢?或者仅仅是把新方法的信息隐藏起来了?

4、最后小结

上文中介绍了参数化测试的概念、实现思路,以及在三个主流的 Python 测试框架中的使用方法。我只用了最简单的例子,为的是快速科普(言多必失)。

但是,这个话题其实还没有结束。对于我们提到的几个能实现参数化的库,抛去写法上大同小异的区别,它们在具体代码层面上,又会有什么样的差异呢?

具体来说,它们是如何做到把一个方法变成多个方法,并且将每个方法与相应的参数绑定起来的呢?在实现中,需要解决哪些棘手的问题?

在分析一些源码的时候,我发现这个话题还挺有意思,所以准备另外写一篇文章。那么,本文就到此为止了,谢谢阅读。

公众号【Python猫】, 本号连载优质的系列文章,有喵星哲学猫系列、Python进阶系列、好书推荐系列、技术写作、优质英文推荐与翻译等等,欢迎关注哦。

© 著作权归作者所有

豌豆花下猫
粉丝 69
博文 74
码字总数 191896
作品 0
苏州
私信 提问
Python 3.8 新功能大揭秘

(给Python开发者加星标,提升Python技能) 编译: CSDN-弯月,作者 ,Serdar Yegulalp Python 3.8是Python语言的最新版本,它适合用于编写脚本、自动化以及机器学习和Web开发等各种任务。现...

Python开发者
2019/06/19
0
0
什么是行为驱动的 Python?

使用 Python behave 框架的行为驱动开发模式可以帮助你的团队更好的协作和测试自动化。 您是否听说过行为驱动开发behavior-driven development(BDD),并好奇这是个什么东西?也许你发现了团...

作者: Andrew Knight
2018/10/16
0
0
如何把 awk 脚本移植到 Python

将一个 awk 脚本移植到 Python 主要在于代码风格而不是转译。 脚本是解决问题的有效方法,而 awk 是编写脚本的出色语言。它特别擅长于简单的文本处理,它可以带你完成配置文件的某些复杂重写...

作者: Moshe Zadka
2019/12/08
0
0
如何将分词工具Jieba封装成一个Tensorflow Operator

简介 本文介绍了如何将基于的分词工具封装成一个Tensorflow Custom Op。 仓库地址 原始的cppjieba仓库 我们修改的分支cppjieba仓库 我们在深度学习开源平台DELTA中也使用了这个OP。 安装 目前...

Cer_ml
2019/10/20
0
0
python面试中较常问及的知识点梳理---高级特性

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 https://blog.csdn.net/Nikki0126/article/details/97793753 • 高级特性 1.函数装饰器有什么...

等我想个好名字
2019/08/28
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Comparing getPath(), getAbsolutePath(), and getCanonicalPath() in Java

1. Overview The java.io.File class has three methods — getPath(), getAbsolutePath() and getCanonicalPath() — to obtain the filesystem path. In this article, we'll have a quick......

Ciet
38分钟前
29
0
Spring5 依赖注入和循环依赖处理

//TODO populateBean 注入属性 doGetBean->getSingleton 删除bean缓存

小小明1995
48分钟前
67
0
每天AC系列(七):合并两个有序链表

1 题目 LeetCode第21题,合并两个有序链表. 2 直接合并 因为已经有序了,类似归并排序中的合并一样,操作不难,直接上代码了. ListNode t = new ListNode(0);ListNode head = t;while(l1 != nu...

Blueeeeeee
51分钟前
47
0
数据结构之双向链表-c语言实现

原文链接:http://blog.seclibs.com/%e6%95%b0%e6%8d%ae%e7%bb%93%e6%9e%84%e4%b9%8b%e5%8f%8c%e5%90%91%e9%93%be%e8%a1%a8-c%e8%af%ad%e8%a8%80%e5%ae%9e%e7%8e%b0/ 这次完成了双向链表的代......

无心的梦呓
52分钟前
65
0
SpringCloud 基础教程(六)-负载均衡Ribbon

 我的博客:兰陵笑笑生,欢迎浏览博客!  上一章 SpringCloud基础教程(五)-配置中心热生效和高可用当中,我们对配置中心进行进行了深入的了解,本章将继续微服务架构的深入学习,了解在微服务...

_兰陵笑笑生
今天
49
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部