文档章节

HanLP中的人名识别分析详解

左手的倒影
 左手的倒影
发布于 2018/10/29 10:09
字数 1753
阅读 92
收藏 0

在看源码之前,先看几遍论文《基于角色标注的中国人名自动识别研究》

关于命名识别的一些问题,可参考下列一些issue:

  1. u名字识别的问题 #387
  2. u机构名识别错误
  3. u关于层叠HMM中文实体识别的过程

HanLP参考博客:

词性标注

层叠HMM-Viterbi角色标注模型下的机构名识别

分词

在HMM与分词、词性标注、命名实体识别中说:

分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)

分词也是采用了维特比算法的动态规划性质求解的,具体可参考:文本挖掘的分词原理

角色观察

以“唱首张学友的歌情已逝”为例,

先将起始顶点 始##始,角色标注为:NR.A 和 NR.K,频次默认为1

对于第一个词“唱首”,它不存在于 nr.txt中,EnumItem<NR> nrEnumItem = PersonDictionary.dictionary.get(vertex.realWord);返回null,于是根据它本身的词性猜一个角色标注:

由于"唱首"的Attribute为 nz 16,不是nr 和 nnt,故默认给它指定一个角色NR.A,频率为nr.tr.txt中 NR.A 角色的总频率。

此时,角色列表如下:

接下来是顶点“张”,由于“张”在nr.txt中,因此PersonDictionary.dictionary.get(vertex.realWord)返回EnumItem对象,直接将它加入到角色列表中:

加入“张”之后的角色列表如下:

“唱首张学友的歌情已逝” 整句的角色列表如下:

至此,角色观察 部分 就完成了。

总结一下,对句子进行角色观察,首先是通过分词算法将句子分成若干个词,然后对每个词查询人名词典(PersonDictionary)。

  1. 若这个词在人名词典中(nr.txt),则记录该词的角色,所有的角色在com.hankcs.hanlp.corpus.tag.NR.java中定义。
  2. 若这个词不在人名词典中,则根据该词的Attribute “猜一个角色”。在猜的过程中,有些词在核心词典中可能已经标注为nr或者nnt了,这时会做分裂处理。其他情况下则是将这个词标上NR.A角色,频率为 NR.A 在转移矩阵中的总词频。

维特比算法(动态规划)求解最优路径

在上图中,给每个词都打上了角色标记,可以看出,一个词可以有多个标记。而我们需要将这些词选择一条路径最短的角色路径。参考隐马尔可夫模型维特比算法详解

List<NR> nrList = viterbiComputeSimply(roleTagList);//some code....return Viterbi.computeEnumSimply(roleTagList, PersonDictionary.transformMatrixDictionary);

而这个过程,其实就是:维特比算法解码隐藏状态序列。在这里,五元组是:

  1. 隐藏状态集合 com.hankcs.hanlp.corpus.tag.NR.java 定义的各个人名标签
  2. 观察状态集合 已经分好词的各个tagList中元素(相当于分词结果)

  1. 转移概率矩阵 由 nr.tr.txt 文件生成得到。具体可参考:
  2. 发射概率 某个人名标签(隐藏状态)出现的次数 除以 所有标签出现的总次数

Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)

  1. 初始状态(始##始) 和 结束状态(末##末)

维特比解码隐藏状态的动态规划求解核心代码如下:

            for (E cur : item.labelMap.keySet())

            {

                double now = transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] - Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur));

                if (perfect_cost > now)

                {

                    perfect_cost = now;

                    perfect_tag = cur;

                }

            }

transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] 是前一个隐藏状态 pre.ordinal()转换到当前隐藏状态cur.ordinal()的转移概率。Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)是当前隐藏状态的发射概率。二者“相减”得到一个概率 保存在double now变量中,然后通过 for 循环找出 当前观察状态 对应的 最可能的(perfect_cost最小) 隐藏状态 perfect_tag。

至于为什么是上面那个公式来计算转移概率和发射概率,可参考论文:《基于角色标注的中国人名自动识别研究

在上面例子中,得到的最优隐藏状态序列(最优路径)K->A->K->Z->L->E->A->A 如下:

nrList = {LinkedList@1065} size = 8
"K" 始##始
"A" 唱首
"K" 张
"Z" 学友
"L" 的
"E" 歌
"A" 情已逝
"A" 末##末
例如:
​隐藏状态---观察状态
"K"----------始##始

最大匹配

有了最优隐藏序列:KAKZLEAA,接下来就是:后续的“最大匹配处理”了。

        PersonDictionary.parsePattern(nrList, pWordSegResult, wordNetOptimum, wordNetAll);

在最大匹配之前,会进行“模式拆分”。在com.hankcs.hanlp.corpus.tag.NR.java 定义了隐藏状态的具体含义。比如说,若最优隐藏序列中 存在 'U' 或者 'V',

U Ppf 人名的上文和姓成词 这里【有关】天培的壮烈

V Pnw 三字人名的末字和下文成词 龚学平等领导, 邓颖【超生】前

则会做“拆分处理”

switch(nr)

{

    case U:

        //拆分成K B

    case V:

        //视情况拆分

}

拆分完成之后,重新得到一个新的隐藏序列(模式)

String pattern = sbPattern.toString();

接下来,就用AC自动机进行最大模式匹配了,并将匹配的结果存储到“最优词网”中。当然,在这里就可以自定义一些针对特定应用的 识别处理规则

trie.parseText(pattern, new AhoCorasickDoubleArrayTrie.IHit<NRPattern>(){

    //.....

    wordNetOptimum.insert(offset, new Vertex(Predefine.TAG_PEOPLE, name, ATTRIBUTE, WORD_ID), wordNetAll);

}

将识别出来的人名保存到最优词网后,再基于最优词网调用一次维特比分词算法,得到最终的分词结果---细分结果。

            if (wordNetOptimum.size() != preSize)

            {

                vertexList = viterbi(wordNetOptimum);

                if (HanLP.Config.DEBUG)

                {

                    System.out.printf("细分词网:\n%s\n", wordNetOptimum);

                }

            }

总结

源码上的人名识别基本上是按照论文中的内容来实现的。对于一个给定的句子,先进行下面三大步骤处理:

角色观察

维特比算法解码求解隐藏状态(求解各个分词 的 角色标记)

对角色标记进行最大匹配(可做一些后处理操作)

最后,再使用维特比算法进行一次分词,得到细分结果,即为最后的识别结果。

这篇文章里面没有写维特比分词算法的详细过程,以及转移矩阵的生成过程,以后有时间再补上。看源码,对隐马模型的理解又加深了一点,感受到了理论的东西如何用代码一步步来实现。由于我也是初学,对源码的理解不够深入或者存在一些偏差,欢迎批评指正。

关于动态规划的一个简单示例,可参考:动态规划之Fib数列类问题应用

文章来源hapjin 的博客

 

© 著作权归作者所有

左手的倒影
粉丝 7
博文 182
码字总数 185988
作品 0
青岛
程序员
私信 提问
自然语言处理工具python调用hanlp中文实体识别

Hanlp作为一款重要的中文分词工具,在GitHub的用户量已经非常之高,应该可以看得出来大家对于hanlp这款分词工具还是很认可的。本篇继续分享一篇关于hanlp的使用实例即Python调用hanlp进行中文...

左手的倒影
02/13
37
0
HanLP分词命名实体提取详解

HanLP分词命名实体提取详解 分享一篇大神的关于hanlp分词命名实体提取的经验文章,文章中分享的内容略有一段时间(使用的hanlp版本比较老),最新一版的hanlp已经出来了,也可以去看看新版的...

左手的倒影
01/11
96
0
在Python中调用Java扩展包HanLP测试记录

最近在研究中文分词及自然语言相关的内容,关注到JAVA环境下的HanLP,HanLP是一个致力于向生产环境普及NLP技术的开源Java工具包,支持中文分词(N-最短路分词、CRF分词、索引分词、用户自定义...

左手的倒影
2018/12/12
33
0
自然语言处理 - HanLP

hankcs
2015/03/28
19.5K
3
汉语言处理包 HanLP 1.6.1 发布,感知机分词性能评估

HanLP 是由一系列模型与算法组成的 Java 工具包,目标是普及自然语言处理在生产环境中的应用。HanLP 具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。 在提供丰富功能的同时,...

王练
2018/03/24
1K
2

没有更多内容

加载失败,请刷新页面

加载更多

解答二进制求和

思路:创建一个新的字符串,用于记录原两个字符串每位相加的结果。 1、因为是从左到右计算,所以要把字符串先进行反转,用reverse()方法。 2、字符串对齐,采用补零的方法。 3、计算的时候...

无名氏的程序员
6分钟前
1
0
JSONUtils

package com.demo.utils;import java.util.ArrayList;import java.util.HashMap;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Tr......

任梁荣
6分钟前
2
1
在jest中配置typescript

测试是报错: Property 'assign' does not exist on type 'ObjectConstructor' NodeJS已经是最新版了,但道理不需要polyfill。 然后发现是typescript的lib没有"es2015.core",说明ts-jest没有......

linsk1998
7分钟前
1
0
Redis实现分布式文件夹锁

缘起 最近做一个项目,类似某度云盘,另外附加定制功能,本人负责云盘相关功能实现,这个项目跟云盘不同的是,以项目为分配权限的单位,同一个项目及子目录所有有权限的用户可以同时操作所有...

逸竹小站
16分钟前
2
0
Andorid SQLite数据库开发基础教程(2)

Andorid SQLite数据库开发基础教程(2) 数据库生成方式 数据库的生成有两种方式,一种是使用数据库管理工具生成的数据库,我们将此类数据库称为预设数据库,另一种是使用代码生成的数据库。...

大学霸
36分钟前
4
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部