文档章节

大数据时代数据库-云HBase架构&生态&实践

 猫耳m
发布于 2018/05/29 21:02
字数 2862
阅读 6
收藏 0

摘要: 2018第九届中国数据库技术大会,阿里云高级技术专家、架构师封神(曹龙)带来题为大数据时代数据库-云HBase架构&生态&实践的演讲。主要内容有三个方面:首先介绍了业务挑战带来的架构演进,其次分析了ApsaraDB HBase及生态,最后分享了大数据数据库的实际案例。

2018第九届中国数据库技术大会,阿里云高级技术专家、架构师封神(曹龙)带来题为大数据时代数据库-云HBase架构&生态&实践的演讲。主要内容有三个方面:首先介绍了业务挑战带来的架构演进,其次分析了ApsaraDB HBase及生态,最后分享了大数据数据库的实际案例。

直播视频回顾
PPT下载请点击
以下是精彩视频内容整理:

业务的挑战

存储量量/并发计算增大


现如今大量的中小型公司并没有大规模的数据,如果一家公司的数据量超过100T,且能通过数据产生新的价值,基本可以说是大数据公司了 。起初,一个创业公司的基本思路就是首先架构一个或者几个ECS,后面加入MySQL,如果有图片需求还可加入磁盘,该架构的基本能力包括事务、存储、索引和计算力。随着公司的慢慢发展,数据量在不断地增大,其通过MySQL及磁盘基本无法满足需求,只有分布式化。 这个时候MySQL变成了HBase,检索变成了Solr/ES,再ECS提供的计算力变成了Spark。但这也会面临存储量大且存储成本高等问题。


另外一个趋势就是非结构化的数据越来越多,数据结构的模式不仅仅是SQL,时序、时空、graph模式也越来越多,需要一些新的存储结构或新的算法去解决这类问题,也意味着所需要做的工程量就会相对较高。

引入更多的数据

对于数据处理大致可归类为四个方面,分别是复杂性、灵活性、延迟<读,写>和分布式,其中分布式肯定是不可少的,一旦缺少分布式就无法解决大规模问题 。灵活性的意思是业务可以任意改变的;复杂性就是运行一条SQL能够访问多少数据或者说SQL是否复杂;延迟也可分为读与写的延迟。Hadoop & Spark可以解决计算复杂性和灵活性,但是解决不了延迟的问题;HBase&分布式索引、分布式数据库可以解决灵活性与延迟的问题,但由于它没有很多计算节点,所以解决不了计算复杂性的问题。Kylin(满足读延迟)在计算复杂性与延迟之间找了一个平衡点,这个平衡点就是怎样快速出报表,但对于这个结果的输入时间我们并不关心,对于大部分的报表类的需求就是这样的。每个引擎都是一定的侧重,没有银弹!

ApsaraDB HBase产品架构及改进

应对的办法

我们也不能解决所有的问题,我们只是解决其中大部分的问题。如何找到一个在工程上能够解决大部分问题的方案至关重要,应对办法:

  • 分布式:提供扩展性
  • 计算力延伸:算子+SQL,从ECS到Spark其本质其实就是一种计算力的延伸
  • 分层设计:降低复杂性,提供多模式的存储模型
  • 云化:复用资源&弹性,降低成本

基本构架


首先包含了两个分离

  • 分别是HDFS与分布式Region分布式检索分离
  • SQL时空图时序Cube与分布式Region检索分离
    大致的分层机构如下:
  • 第一层:介质层,热SSD介质、温SSD&SATA 混合、冷纯SATA(做EC)
  • 第二层:分布式文件系统,也就是盘古。事实上越是底层越容易做封装优化。
  • 第三层:分布式安全隔离保障层QOS,如果我们做存储计算分离,就意味着底层的三个集群需要布三套,这样每个集群就会有几十台甚至几百台的节点,此时存储力是由大家来均摊的,这就意味着分布式安全隔离保障层要做好隔离性,引入QOS就意味着会增加延迟,此时会引入一些新的硬件(比如RDMA)去尽可能的减小延迟。
  • 第四层:分布式文件接口:HDFS & API(此层看情况可有可无)
  • 第五层:我们提供了两个组件,分布式Region-HBase与分布式检索-Solr,在研究分布索引的时候发现单机索引是相对简单的,我们提供针对二级索引采取内置的分布式Region的分布式架构,针对全文索引采取外置Solr分布式索引方案
  • 第六层:建设在分布式KV之上,有NewSQL套件、时空套件、时序套件、图套件及Cube套件
    另外,可以引入spark来分析,这个也是社区目前通用的方案

解决成本的方案

对于解决成本的方案简单介绍如下:

  • 分级存储:SSD与SATA的价格相差很多,在冷数据上,我们建议直接采取冷存储的方式 ,可以节约500%的成本
  • 高压缩比:在分级存储上有一个较好的压缩,尤其是在冷数据,我们可以提高压缩比例,另外分布式文件系统可以采取EC进一步降低存储成本,节约100%的成本
  • 基础设施共享:库存压力分担,云平台可以释放红利给客户
  • 存储与计算分离:按需计费
  • 优化性能:再把性能提升1倍左右

云数据库基本部署结构


假设在北京有三个机房可用区A、B和C,我们会在可用区A中部署一个热的存储集群,在北京整体区域部一个冷的存储集群,实际上有几个可用区就可以有几个热集群,主要是保障延迟的;冷集群对延迟相对不敏感,可以地域单独部署,只要交换机满足冷集群所需的带宽即可。这样的好处是三个区共享一个冷集群,就意味着可以共享库存。

ApsaraDB HBase产品能力

我们提供两个版本,一是单节点版,其特点是给开发测试用或者可用性不高,数据量不大的场景。二是集群版本其特点是高至5000w QPS,多达10P存储与高可靠低延迟等。

  • 数据可靠性:99.99999999%:之所以可靠性可以达到如此之高,其核心的原因就是存储集群是单独部署的,其会根据机架等进行副本放置优化
  • 服务可用性:单集群99.9% 双集群99.99%。
  • 服务保障:服务未满足SLA赔付。
  • 数据备份及恢复。
  • 数据热冷分离分级存储。
  • 企业级安全:认证授权及加密。
  • 提供检索及二级索引及NewSQL能力。
  • 提供时序/图/时空/Cube相关能力。
  • 与Spark无缝集成,提供AP能力。

数据备份及恢复


备份分为全量备份HFile与 增量量备份HLog;恢复分为HLog转化为HFile和BulkLoad加载。阿里云集团迄今为止已经有一万两千多台的HBase,大部分都是主备集群的,在云上由于客户成本的原因,大部分不选择主备,所以需要对数据进行备份。其难点在于备份需要引入计算资源,我们需要引入弹性的计算资源来处理备份的相关计算任务

Compaction 离线Compaction(研究中)


我们在内部研究如何通FPGA对Compaction进行加速,这会使得集群运行比较平缓,特别是对计算资源少,存储量大的情况下,可以通过离线的作业处理Compaction。

组件层

我们有5中组件,NewSQL(Phoenix)、时序OpenTSDB、时空GeoMesa、图JanusGraph及Cube的Kylin,及提供HTAP能力的Spark。这里简单描述几个,如下:

NewSQL-Phoenix

客户还是比较喜欢用SQL的,Phoenix会支持SQL及二级索引,在超过1T的数据量的情况下,对事务的需求就很少(所以我们并没有支持事务);二级索引是通过再新建一张HBase表来实现的。在命中索引的情况下,万亿级别的访问基本在毫秒级别,但由于Phoenix聚合点在一个节点,所以不能做Shuffle类似的事情,同时也就不能处理复杂的计算,所以任何说我是HTAP架构的,如果不能做Shuffle,就基本不能做复杂的计算。

HTAP-Spark


在HTAP-Spark这部分主要介绍一下RDD API、 SQL、直接访问HFile,它们的特点如下:

  • RDD API具有简单方便,默认支持的特点,但高并发scan大表会影响稳定性;
  • SQL支持算子下推、schema映射、各种参数调优,高并发scan大表会影响稳定性;
  • 直接访问HFile,直接访问存储不经过计算,大批量量访问性能最好,需要snapshot对齐数据。

时序-OpenTSDB & HiTSDB

TSD没有状态,可以动态加减节点,并按照时序数据的特点设计表结构,其内置针对浮点的高压缩比的算法,我们云上专业版的HiTSDB增加倒排等能力,并能够针对时序增加插值、降精度等优化。

大数据数据库的实际案例

以下简单介绍几个客户的案例,目前已经在云上ApsaraDB HBase运行,数据量基本在10T以上:

某车联网公司


这是一个车联网的客户,有100万车,每辆车每10秒上传一次,每次1KB,这样一年就有300T数据,六个月以上是数据低频访问,所以他要做分级存储,把冷数据放到低介质上

某大数据控公司


这是一个大数据控公司,它大约有200T+的数据量,将HBase数据 (在线实时大数据存储)作为主数据库,先用HBase做算法训练,再用HBase SQL出报表,另外做了一套ECS进行实时查以便与客户之间进行数据交换。

某社交公司


社交会有大量的推荐,所以SLA要求高达99.99,并采用双集群保障,单集群读写高峰QPS 可以达到1000w+,数据量在30T左右。

某基金公司


这是一个金融公司,它有10000亿以上的交易数据,目前用多个二级索引支持毫秒级别的查询,数据量在100T左右

某公司报表系统

先离线建好Cube再把数据同步到HBase中,实时数据通过Blink对接进行更新,数据量在可达20T左右。

原文链接

© 著作权归作者所有

粉丝 2
博文 288
码字总数 570099
作品 0
私信 提问
HBase+Spark技术双周刊 第三期

最全资料下载 2018年 | HBase生态社群画像 +最全资料汇总下载 在本文中,云栖社区与阿里云多模型数据库组联合出品了《HBase生态社群画像》,并且附上了最全汇总资料,如HBase开发者画像、HBa...

hbase小能手
01/05
0
0
八年磨一剑,重新定义HBase——HBase 2.0&阿里云HBase解读

摘要:2018年6月6日,阿里云ApsaraDB for HBase2.0正式发布!从2010年开始“试水”到2018年,拥有了3个PMC,6个Committer,拥有中国最多HBase Committer的公司之一的阿里巴巴是如何八年磨一剑...

Mr_zebra
2018/06/13
113
0
HBase2.0商用首发--有哪些值得期待的新特性

【HBase生态+Spark社区大群】 1.技术交流钉钉大群【强烈推荐!】 群内每周进行群直播技术分享及问答 加入方式1: 点击链接申请加入 https://dwz.cn/Fvqv066s 加入方式2: 钉钉扫码加入: 2....

HBase技术社区
2018/12/04
0
0
Apache旗下顶级盛会HBaseConAsia2019将于7月20日在北京举行

Apache HBase介绍 Apache HBase是基于Apache Hadoop构建的一个高可靠性、高性能、可伸缩的分布式存储系统,它提供了大数据背景下的高性能的随机读写能力,HBase是Google Big table的开源实现...

正研
07/09
0
0
HBase+Spark技术双周刊 第四期

直播往期回顾——视频回看及PPT下载 Solr增强HBase检索能力基础介绍及场景 在本期视频中,阿里高级开发工程师天斯介绍了Solr如何增强HBase检索能力,并通过示例帮助大家快速上手HBase+Solr查...

hbase小能手
01/19
0
0

没有更多内容

加载失败,请刷新页面

加载更多

linux 磁盘不足异常

linux 报 No space left on device 异常 ,则是磁盘不足 ,导致异常 运行 df -h 命令查询磁盘使用率,如果有100%,则查找目录大日志文件删除 1.磁盘不足导致系统应用写入文件失败,如系统日志...

zaolonglei
43分钟前
3
0
即学即用的 30 段 Python 实用代码

☞ 分享:最全最新的Python学习大礼包 ☜ 点击查看 编译:Pita & AI开发者,作者:Fatos Morina Python是目前最流行的语言之一,它在数据科学、机器学习、web开发、脚本编写、自动化方面被许...

Object_Man
43分钟前
5
0
The server time zone value 'EDT' is unrecognized or represents more than one time zone.

2019-10-14 18:07:43.714 ERROR 74363 --- [Druid-ConnectionPool-Create-1855026648] com.alibaba.druid.pool.DruidDataSource : create connection SQLException, url: jdbc:mysql://10.30......

yizhichao
57分钟前
9
0
html加载顺序以及影响页面二次渲染额的因素

本文转载于:专业的前端网站➱html加载顺序以及影响页面二次渲染额的因素 浏览器请求发往服务器以后,返回HTML页面,页面内容开始渲染,具体的执行顺序为: 1. 浏览器开始载入html代码,发现<...

前端老手
59分钟前
9
0
BeginnersBook JSP、JSTL、Servlet 教程

来源:ApacheCN BeginnersBook 翻译项目 译者:飞龙 协议:CC BY-NC-SA 4.0 贡献指南 本项目需要校对,欢迎大家提交 Pull Request。 请您勇敢地去翻译和改进翻译。虽然我们追求卓越,但我们并...

ApacheCN_飞龙
今天
7
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部