文档章节

人工智能资料库:第39辑(20170223)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:27
字数 629
阅读 1
收藏 0

  1. 【博客 & 视频】Why Medicine Needs Deep Learning

简介:


Deep learning will transform medicine, but not in the way that many advocates think. The amount of data times the mutation frequency divided by the biological complexity and the number of hidden variables is small, so downloading a hundred thousand genomes and training a neural network won’t cut it.

原文链接:http://artificialbrain.xyz/why-medicine-needs-deep-learning/


2.【博客】Read-through: Wasserstein GAN

简介:

For Wasserstein GAN, it was mostly compelling word of mouth.

  • The paper proposes a new GAN training algorithm that works well on the common GAN datasets.

  • Said training algorithm is backed up by theory. In deep learning, not all theory-justified papers have good empirical results, but theory-justified papers with good empirical results have really good empirical results. For those papers, it’s very important to understand their theory, because the theory usually explains why they perform so much better.

  • I heard that in Wasserstein GAN, you can (and should) train the discriminator to convergence. If true, it would remove needing to balance generator updates with discriminator updates, which feels like one of the big sources of black magic for making GANs train.

  • The paper shows a correlation between discriminator loss and perceptual quality. This is actually huge if it holds up well. In my limited GAN experience, one of the big problems is that the loss doesn’t really mean anything, thanks to adversarial training, which makes it hard to judge if models are training or not. Reinforcement learning has a similar problem with its loss functions, but there we at least get mean episode reward. Even a rough quantitative measure of training progress could be good enough to use automated hyperparam optimization tricks, like Bayesian optimization. (See this post and this post for nice introductions to automatic hyperparam tuning.)

原文链接:http://www.alexirpan.com/2017/02/22/wasserstein-gan.html?utm_content=buffer7f258&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer


3.【demo & 代码】Image-to-Image Demo

简介:


Recently, I made a Tensorflow port of pix2pix by Isola et al., covered in the article Image-to-Image Translation in Tensorflow. I've taken a few pre-trained models and made an interactive web thing for trying them out. Chrome is recommended.

The pix2pix model works by training on pairs of images such as building facade labels to building facades, and then attempts to generate the corresponding output image from any input image you give it. The idea is straight from the pix2pix paper, which is a good read.

原文链接:http://affinelayer.com/pixsrv/index.html


4.【博客】Sorting through the tags: how does Tumblr’s graph-based topic modeling work?

简介:


What makes Tumblr stand apart from other social media platforms lies in the unique way its users communicate with each other. Each user has their own highly customizable blog where they can post and share content — like articles, images, GIFs, or videos — or re-post content published by another user. Sharing and re-posting content is not only key to how social connections are formed, but also how trending and popular topics are established, since the user must tag each post that they publish.

原文链接:https://medium.com/@NYUDataScience/sorting-through-the-tags-how-does-tumblrs-graph-based-topic-modeling-work-1d396fb48f54#.fay5h8act


5.【博客 & 代码】How to implement Sentiment Analysis using word embedding and Convolutional Neural Networks on Keras.

简介:

Imdb has released a database of 50,000 movie reviews classified in two categories: Negative and Positive. This is a typical sequence binary classification problem.

In this article, I will show how to implement a Deep Learning system for such sentiment analysis with ~87% accuracy. (State of the art is at 88.89% accuracy).

原文链接:https://medium.com/@thoszymkowiak/how-to-implement-sentiment-analysis-using-word-embedding-and-convolutional-neural-networks-on-keras-163197aef623#.sq6ax02mg


本文转载自:http://www.jianshu.com/p/2fff505a8e9a

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
【Java每日一题】20170223

20170222问题解析请点击今日问题下方的“【Java每日一题】20170223”查看(问题解析在公众号首发,公众号ID:weknow619) 今日问题: 请问主程序是否有编译错误?(点击以下“【Java每日一题...

weknow
2017/02/23
0
0
Redshift drop有依赖关系的表

今天开发需要删除AWS Redshift的一个归档表,但是直接drop发生了如下报错,发现有其他对象依赖这个表,导致无法直接删除,但是报错没有直接显示是什么对象依赖它,可能是有视图,外键等约束 ...

Darren_Chen
08/14
0
0
2017中国人工智能峰会即将开启,和30位AI大咖一起头脑风暴

倒计时一天!镁客君届时将为大家带来这次人工智能峰会的现场直播。 进入9月后,整个金陵城开始变得非常热闹,刚送走一场场VR/AR相关的会议活动,又一波人工智能的峰会正在袭来。 9月12日,由...

行者武松
04/11
0
0

没有更多内容

加载失败,请刷新页面

加载更多

聊聊redisson的DelayedQueue

序 本文主要研究一下redisson的DelayedQueue maven <dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.8.1</version></dependenc......

go4it
14分钟前
1
0
一张图看懂JVM

JVM结构示意图 JVM总体概述 JVM总体上是由类装载子系统(ClassLoader)、运行时数据区、执行引擎、内存回收这四个部分组成。其中我们最为关注的运行时数据区,也就是JVM的内存部分则是由方法...

小致dad
16分钟前
0
0
安全管理标准

安全生产严重等级分类: 故障频次: 风险等级矩阵:

乔老哥
47分钟前
2
0
数据结构“树”的相关微视频

今天在腾讯视频上闲逛,然後发现一个叫“岚人”的用户上传了几段小视频,基本上都在5分钟以内,讲解了关于树的一些结构和算法。零代码,非常适合初学者入门。不过,对于老鸟来说,这也是非常...

Iridium
59分钟前
1
0
10-利用思维导图梳理JavaSE-Java 集合

10-利用思维导图梳理JavaSE-Java 集合 主要内容 1.Collection接口 2.Set接口 2.1.Set接口概述 2.2.HashSet类 2.3.TreeSet类 2.4.SortedSet接口 3.List接口 3.1.List接口概述 3.2.ArrayList类...

飞鱼说编程
今天
4
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部