文档章节

人工智能资料库:第39辑(20170223)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:27
字数 629
阅读 1
收藏 0
点赞 0
评论 0

  1. 【博客 & 视频】Why Medicine Needs Deep Learning

简介:


Deep learning will transform medicine, but not in the way that many advocates think. The amount of data times the mutation frequency divided by the biological complexity and the number of hidden variables is small, so downloading a hundred thousand genomes and training a neural network won’t cut it.

原文链接:http://artificialbrain.xyz/why-medicine-needs-deep-learning/


2.【博客】Read-through: Wasserstein GAN

简介:

For Wasserstein GAN, it was mostly compelling word of mouth.

  • The paper proposes a new GAN training algorithm that works well on the common GAN datasets.

  • Said training algorithm is backed up by theory. In deep learning, not all theory-justified papers have good empirical results, but theory-justified papers with good empirical results have really good empirical results. For those papers, it’s very important to understand their theory, because the theory usually explains why they perform so much better.

  • I heard that in Wasserstein GAN, you can (and should) train the discriminator to convergence. If true, it would remove needing to balance generator updates with discriminator updates, which feels like one of the big sources of black magic for making GANs train.

  • The paper shows a correlation between discriminator loss and perceptual quality. This is actually huge if it holds up well. In my limited GAN experience, one of the big problems is that the loss doesn’t really mean anything, thanks to adversarial training, which makes it hard to judge if models are training or not. Reinforcement learning has a similar problem with its loss functions, but there we at least get mean episode reward. Even a rough quantitative measure of training progress could be good enough to use automated hyperparam optimization tricks, like Bayesian optimization. (See this post and this post for nice introductions to automatic hyperparam tuning.)

原文链接:http://www.alexirpan.com/2017/02/22/wasserstein-gan.html?utm_content=buffer7f258&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer


3.【demo & 代码】Image-to-Image Demo

简介:


Recently, I made a Tensorflow port of pix2pix by Isola et al., covered in the article Image-to-Image Translation in Tensorflow. I've taken a few pre-trained models and made an interactive web thing for trying them out. Chrome is recommended.

The pix2pix model works by training on pairs of images such as building facade labels to building facades, and then attempts to generate the corresponding output image from any input image you give it. The idea is straight from the pix2pix paper, which is a good read.

原文链接:http://affinelayer.com/pixsrv/index.html


4.【博客】Sorting through the tags: how does Tumblr’s graph-based topic modeling work?

简介:


What makes Tumblr stand apart from other social media platforms lies in the unique way its users communicate with each other. Each user has their own highly customizable blog where they can post and share content — like articles, images, GIFs, or videos — or re-post content published by another user. Sharing and re-posting content is not only key to how social connections are formed, but also how trending and popular topics are established, since the user must tag each post that they publish.

原文链接:https://medium.com/@NYUDataScience/sorting-through-the-tags-how-does-tumblrs-graph-based-topic-modeling-work-1d396fb48f54#.fay5h8act


5.【博客 & 代码】How to implement Sentiment Analysis using word embedding and Convolutional Neural Networks on Keras.

简介:

Imdb has released a database of 50,000 movie reviews classified in two categories: Negative and Positive. This is a typical sequence binary classification problem.

In this article, I will show how to implement a Deep Learning system for such sentiment analysis with ~87% accuracy. (State of the art is at 88.89% accuracy).

原文链接:https://medium.com/@thoszymkowiak/how-to-implement-sentiment-analysis-using-word-embedding-and-convolutional-neural-networks-on-keras-163197aef623#.sq6ax02mg


本文转载自:http://www.jianshu.com/p/2fff505a8e9a

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
2017中国人工智能峰会即将开启,和30位AI大咖一起头脑风暴

倒计时一天!镁客君届时将为大家带来这次人工智能峰会的现场直播。 进入9月后,整个金陵城开始变得非常热闹,刚送走一场场VR/AR相关的会议活动,又一波人工智能的峰会正在袭来。 9月12日,由...

行者武松
04/11
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
柯洁月底将再战人工智能,胜算成谜,背后的网信和星阵战略合作了

  柯洁九段,一个原本很高阶的围棋高手,几乎连他都不会想到现在也成为人工智能的一张名片,这一切正是那场世界级的围棋人机大战。   结果大家都知道是惨败给AlphaGo,却将人工智推到了一...

遇见人工智能
04/19
0
0
人工智能、大数据、复杂系统学习

黑科技,人工智能前进之路势不可挡! “做大做强新兴产业集群,实施大数据发展行动,加强新一代人工智能研发应用。发展智能产业,拓展智能生活。” 人工智能已作为国家乃至全球新的经济增长动...

自学号
05/10
0
0
麻省理工与BCG联合调查:叶公好龙还是未雨绸缪?AI如何重塑商业

根据麻省理工斯隆商学院和波士顿咨询(BCG)的一项人工智能企业应用联合调查,美国的企业高管们相信AI人工智能将对企业产生重大影响,但目前只有少数管理者在AI方面付诸行动。 该报告中的亮点...

Cashcow
2017/09/18
0
0
人工智能有“天花板” 传统产业要“+科技”——知名企业家激战“新经济”

(原标题:人工智能有“天花板” 传统产业要“+科技”——知名企业家激战“新经济”) 中国证券网讯 据新华社12月5日消息,“携手新时代,共话新经济”,第四届世界互联网大会上,多位企业家...

上海证券报·中国证券网
2017/12/05
0
0
“新一线城市”榜单出炉 去年落榜的无锡为何又强势回归?

▼ 点击上方蓝字 关注网易智能 为你解读AI领域大公司大事件,新观点新应用 榜单出炉 第一财经周刊日前发布“2018中国城市商业魅力排行榜”,中国城市分级新榜出炉。北上广深依旧牢牢占据了一...

mcil9g4065q
04/30
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

about git flow

  昨天元芳做了git分支管理规范的分享,为了拓展大家关于git分支的认知,这里我特意再分享这两个关于git flow的链接,大家可以看一下。 Git 工作流程 Git分支管理策略   git flow本质上是...

qwfys
今天
2
0
Linux系统日志文件

/var/log/messages linux系统总日志 /etc/logrotate.conf 日志切割配置文件 参考https://my.oschina.net/u/2000675/blog/908189 dmesg命令 dmesg’命令显示linux内核的环形缓冲区信息,我们可...

chencheng-linux
今天
1
0
MacOS下给树莓派安装Raspbian系统

下载镜像 前往 树莓派官网 下载镜像。 点击 最新版Raspbian 下载最新版镜像。 下载后请,通过 访达 双击解压,或通过 unzip 命令解压。 检查下载的文件 ls -lh -rw-r--r-- 1 dingdayu s...

dingdayu
今天
1
0
spring boot使用通用mapper(tk.mapper) ,id自增和回显等问题

最近项目使用到tk.mapper设置id自增,数据库是mysql。在使用通用mapper主键生成过程中有一些问题,在总结一下。 1、UUID生成方式-字符串主键 在主键上增加注解 @Id @GeneratedValue...

北岩
今天
2
0
告警系统邮件引擎、运行告警系统

告警系统邮件引擎 cd mail vim mail.py #!/usr/bin/env python#-*- coding: UTF-8 -*-import os,sysreload(sys)sys.setdefaultencoding('utf8')import getoptimport smtplibfr......

Zhouliang6
今天
1
0
Java工具类—随机数

Java中常用的生成随机数有Math.random()方法及java.util.Random类.但他们生成的随机数都是伪随机的. Math.radom()方法 在jdk1.8的Math类中可以看到,Math.random()方法实际上就是调用Random类...

PrivateO2
今天
3
0
关于java内存模型、并发编程的好文

Java并发编程:volatile关键字解析    volatile这个关键字可能很多朋友都听说过,或许也都用过。在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果。在...

DannyCoder
昨天
1
0
dubbo @Reference retries 重试次数 一个坑

在代码一中设置 成retries=0,也就是调用超时不用重试,结果DEBUG的时候总是重试,不是0吗,0就不用重试啊。为什么还是调用了多次呢? 结果在网上看到 这篇文章才明白 https://www.cnblogs....

奋斗的小牛
昨天
2
0
数据结构与算法3

要抓紧喽~~~~~~~放羊的孩纸回来喽 LowArray类和LowArrayApp类 程序将一个普通的Java数组封装在LowArray类中。类中的数组隐藏了起来,它是私有的,所以只有类自己的方法才能访问他。 LowArray...

沉迷于编程的小菜菜
昨天
1
0
spring boot应用测试框架介绍

一、spring boot应用测试存在的问题 官方提供的测试框架spring-boot-test-starter,虽然提供了很多功能(junit、spring test、assertj、hamcrest、mockito、jsonassert、jsonpath),但是在数...

yangjianzhou
昨天
8
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部