文档章节

人工智能资料库:第2辑(20170106)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:27
字数 952
阅读 9
收藏 0

  1. 【代码】TensorFlow implementation of "Learning from Simulated and Unsupervised Images through Adversarial Training"

简介:

利用TensorFlow实现了苹果的第一篇人工智能论文 Learning from Simulated and Unsupervised Images through Adversarial Training

原文链接:https://github.com/carpedm20/simulated-unsupervised-tensorflow


2.【博客】The Major Advancements in Deep Learning in 2016

简介:

该博客主要陈述了深度学习在2016年的主要进展,包括以下几个方面:

  • 无监督的学习
  • 生成式对抗网络(GAN,InfoGAN,Conditional GANs)
  • 自然语言处理(Text understanding,Question Answering,Machine Translation)
  • 社区(TensorFlow,Keras,CNTK,MXNET,Theano,Torch)

原文链接:http://www.kdnuggets.com/2017/01/major-advancements-deep-learning-2016.html#.WG6C7KA4x5Q.facebook


3.【视频】XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

简介:

We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is only 2.9% less than the full-precision AlexNet (in top-1 measure). We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.

原文链接:http://videolectures.net/eccv2016_rastegari_neural_networks/?q=eccv+2016


4.【课程】伯克利大学2017年春季最新课程:深度增强学习

简介:

下面列出了本课程的大纲。PPT等参考材料将随课程进度放出。

1 1/18 导论和课程概述 Schulman,Levine,Finn
2 1/23 监督学习:动力系统和行为克隆 Levine
2 1/25 优化控制背景:LQR,规划 Levine
2 1/27 复习:autodiff,反向传播,优化 Finn
3 1/30 用数据学习动力系统模型 Levine
3 2/1 优化控制与从优化控制器学习 Levine
4 2/6 客座讲座:Igor Mordatch,OpenAI Mordatch
4 2/8 RL的定义,值迭代,策略迭代 Schulman
5 2/13 增强学习与策略梯度 Schulman
5 2/15 Q函数:Q学习,SARSA,等 Schulman
6 2/22 高级Q函数:重放缓冲,目标网络,双Q学习 Schulman
7 2/27 高级模型学习:从图像和视频学习
7 3/1 高级模拟:policy distillation Finn
8 3/6 反向RL Finn
8 3/8 高级策略梯度:自然梯度和TPRO Schulman
9 3/13 策略梯度方差缩减与 actor-critic算法 Schulman
9 3/15 策略梯度和时间差分法小结 Schulman
10 3/20 探索问题 Schulman
10 3/22 深度增强学习中存在的问题和挑战 Levine
11 3/27 春假
11 3/29
12 4/3 深度增强学习中的平行和异步 Levine
12 4/5 客座讲座:Mohammad Norouzi,Google Brain Norouzi
13 4/10 客座讲座:Pieter Abbeel,UC Berkeley & OpenAI Abbeel
13 4/12 项目成果报告
14 4/17 高级模拟学习和反向RL算法 Finn
14 4/19 客座讲座(待定) 待定
15 4/24 客座讲座:Aviv Tamar,UC Berkeley Tamar
15 4/26 期末项目presentation
16 5/1 期末项目presentation
16 5/3 期末项目presentation

原文链接:http://rll.berkeley.edu/deeprlcourse/


5.【NIPS 2016 论文】Learning feed-forward one-shot learners

简介:

One-shot learning is usually tackled by using generative models or discriminative embeddings. Discriminative methods based on deep learning, which are very effective in other learning scenarios, are ill-suited for one-shot learning as they need large amounts of training data. In this paper, we propose a method to learn the parameters of a deep model in one shot. We construct the learner as a second deep network, called a learnet, which predicts the parameters of a pupil network from a single exemplar. In this manner we obtain an efficient feed-forward one-shot learner, trained end-to-end by minimizing a one-shot classification objective in a learning to learn formulation. In order to make the construction feasible, we propose a number of factorizations of the parameters of the pupil network. We demonstrate encouraging results by learning characters from single exemplars in Omniglot, and by tracking visual objects from a single initial exemplar in the Visual Object Tracking benchmark.

原文链接:https://arxiv.org/pdf/1606.05233v1.pdf

视频讲解:https://theinformationageblog.wordpress.com/2017/01/06/interesting-papers-from-nips-2016-iii-learning-feed-forward-one-shot-learners/


本文转载自:http://www.jianshu.com/p/b470a8e13848

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
【Java每日一题】20170106

20170105问题解析请点击今日问题下方的“【Java每日一题】20170106”查看(问题解析在公众号首发,公众号ID:weknow619) 今日问题: 以上两个方法使用了变长参数,请问这两个方法声明有误吗...

weknow
2017/01/06
0
0
【Java每日一题】20170109

20170106问题解析请点击今日问题下方的“【Java每日一题】20170109”查看(问题解析在公众号首发,公众号ID:weknow619) 今日问题: 请问主程序能否正常编译通过?(点击以下“【Java每日一...

weknow
2017/01/09
0
0
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0

没有更多内容

加载失败,请刷新页面

加载更多

使用JavaScript编写iOS应用业务逻辑

JSAUIKitCocoa使你可以使用JavaScript编写对性能要求不高但可能变动性很大的iOS应用的业务逻辑部分,View组件、需要多线程支持的Model等则直接使用原生对象。 编写方式与React Native相似,但...

neal01
9分钟前
0
0
艺术品区块链溯源防伪平台(连载一)

Netkiller Blockchain 手札 作者正在找工作,联系方式 13113668890 Mr. Neo Chan, 陈景峯(BG7NYT) 中国广东省深圳市望海路半岛城邦三期 518067 +86 13113668890 <netkiller@msn.com> 文档始创...

netkiller-
10分钟前
0
0
0032-如何在CDH启用Kerberos的情况下安装及使用Sentry(二)

温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 5.Sentry列权限管理 1.在集群所有节点添加fayson_r用户 [root@ip-172-31-6-148 cdh-shell-bak]# useradd fayson_r[root@i...

Hadoop实操
14分钟前
0
0
Nginx配置中Location的优先级

根据Nginx的官方文档,Location标签一共有四个修饰符,分别是: (1) =:表示完全匹配; (2) ^~:匹配URI的前缀,并且后面的正则表达式不再匹配,如果一个URI同时满足两个规则的话,匹配最长的规...

cloes
昨天
0
0
Xcode 10 Archive 卡死问题

前段时间贪新鲜更新了xcode 10,发现就是自己没事找事后悔啊........ 首先是 libstdc++.6.0.9.tbd 已不被使用,以前的项目是一顿报错!!!一个个改也不是办法还有一些第三方的用到只好把lib...

壹峰
昨天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部