文档章节

人工智能资料库:第42辑(20170308)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:26
字数 772
阅读 0
收藏 0

  1. 【代码】Machine Learning From Scratch

简介:

Python implementations of some of the fundamental Machine Learning models and algorithms from scratch.

While some of the matrix operations that are implemented by hand (such as calculation of covariance matrix) are available in numpy I have decided to add these as well to make sure that I understand how the linear algebra is applied. The reason the project uses scikit-learn is to evaluate the implementations on sklearn.datasets.

The purpose of this project is purely self-educational.

Feel free to reach out if you can think of ways to expand this project.

原文链接:https://github.com/eriklindernoren/ML-From-Scratch


2.【论文】RNN models for image generation

简介:

Today we’re looking at the remaining papers from the unsupervised learning and generative networks section of the ‘top 100 awesome deep learning papers‘ collection. These are:

DRAW: A recurrent neural network for image generation, Gregor et al., 2015
Pixel recurrent neural networks, van den Oord et al., 2016
Auto-encoding variational Bayes, Kingma & Welling, 2014

原文链接:https://blog.acolyer.org/2017/03/03/rnn-models-for-image-generation/


3.【博客】An Interactive Tutorial on Numerical Optimization

简介:

Numerical Optimization is one of the central techniques in Machine Learning. For many problems it is hard to figure out the best solution directly, but it is relatively easy to set up a loss function that measures how good a solution is - and then minimize the parameters of that function to find the solution.

I ended up writing a bunch of numerical optimization routines back when I was first trying to learn javascript. Since I had all this code lying around anyway, I thought that it might be fun to provide some interactive visualizations of how these algorithms work.

The cool thing about this post is that the code is all running in the browser, meaning you can interactively set hyper-parameters for each algorithm, change the initial location, and change what function is being called to get a better sense of how these algorithms work.

All the code for this post is up on github if you want to check it out, it has both the minimization functions as well as all of the visualizations.

原文链接:http://www.benfrederickson.com/numerical-optimization/


4.【代码】Approximate Nearest Neighbor Search for Sparse Data in Python!

简介:

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Out of the box, PySparNN supports Cosine Distance (i.e. 1 - cosine_similarity).

PySparNN benefits:

  • Designed to be efficient on sparse data (memory & cpu).
  • Implemented leveraging existing python libraries (scipy & numpy).
  • Easily extended with other metrics: Manhattan, Euclidian, Jaccard, etc.
  • Max distance thresholds can be set at query time (not index time). I.e. return the k closest items no more than max_distance from the query point.
  • Supports incremental insertion of elements.

原文链接:https://github.com/facebookresearch/pysparnn#pysparnn


5.【博客 & 视频】A gentle introduction to PyTorch and TensorFlow with a Reddit link

简介:


This is the first post for this week. I will use it for the introduction of some Python libraries that are being widely adopted by the deep learning communities. I will also disclose today that The Information Age will change its weekly schedules of posts from 5 p/week to three p/week. The reason is that I plan to begin another project of a blog soon and I will be busy in the meantime. This new project will be somewhat closely related with most of the content I have been posting here, so the posts here will certainly gain even more with this diversified schedule. I intend to post Mondays, Wednesdays and Fridays, but if for some reason this order changes I will notice in advance, or I will feel free to mention the change in the relevant post.

Today I will share a video about the introduction of a course that lectures on the PyTorch and TensorFlow Python/C++ libraries, now taking deeper root at the deep learning and artificial intelligence communities. Further, below the video, I share a link to a fascinating post I found in the Reddit social media website, featuring a Q&A about the comparisons about the advantages and shortcomings of those two libraries, which I thought to be a highly appropriate readership for all involved or interested in these subjects. Some of the highlights are in bold quotes, as usual in this blog.

原文链接:https://theinformationageblog.wordpress.com/2017/03/06/a-gentle-introduction-to-pytorch-and-tensorflow-with-a-reddit-link/


本文转载自:http://www.jianshu.com/p/27768546406a

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
免费教材丨第48期:业界大牛中文教学视频《深度学习:进阶》第25-28讲

小编说 我们将继续发放彭老师的《深度学习:进阶》课程,本期发放第25-28讲,本教材由麦子学院提供,现表示感谢。本教学视频为中文教学,代码讲解为主,通俗易懂哦! 彭亮简介 美国犹他州立大...

r1unw1w
2017/10/29
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

7 个致命的 Linux 命令

导读 如果你是一个 Linux 新手,在好奇心的驱使下,可能会去尝试从各个渠道获得的命令。以下是 7 个致命的 Linux 命令,轻则使你的数据造成丢失,重则使你的系统造成瘫痪,所以,你应当竭力避...

问题终结者
今天
0
0
设计模式:工厂方法模式(工厂模式)

工厂方法模式才是真正的工厂模式,前面讲到的静态工厂模式实际上不能说是一种真正意义上的设计模式,只是一种变成习惯。 工厂方法的类图: 这里面涉及到四个种类: 1、抽象产品: Product 2、...

京一
今天
0
0
区块链和数据库,技术到底有何区别?

关于数据库和区块链,总会有很多的困惑。区块链其实是一种数据库,因为他是数字账本,并且在区块的数据结构上存储信息。数据库中存储信息的结构被称为表格。但是,区块链是数据库,数据库可不...

HiBlock
今天
0
0
react native 开发碰到的问题

react-navigation v2 问题 问题: static navigationOptions = ({navigation, navigationOptions}) => ({ headerTitle: ( <Text style={{color:"#fff"}}>我的</Text> ), headerRight: ( <View......

罗培海
今天
0
0
Mac Docker安装流程

久仰Docker大名已久,于是今天趁着有空,尝试了一下Docker 先是从docker的官网上下载下来mac版本的docker安装包,安装很简易,就直接拖图标就好了。 https://www.docker.com/products/docker...

writeademo
今天
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部