文档章节

人工智能资料库:第42辑(20170308)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:26
字数 772
阅读 1
收藏 0

  1. 【代码】Machine Learning From Scratch

简介:

Python implementations of some of the fundamental Machine Learning models and algorithms from scratch.

While some of the matrix operations that are implemented by hand (such as calculation of covariance matrix) are available in numpy I have decided to add these as well to make sure that I understand how the linear algebra is applied. The reason the project uses scikit-learn is to evaluate the implementations on sklearn.datasets.

The purpose of this project is purely self-educational.

Feel free to reach out if you can think of ways to expand this project.

原文链接:https://github.com/eriklindernoren/ML-From-Scratch


2.【论文】RNN models for image generation

简介:

Today we’re looking at the remaining papers from the unsupervised learning and generative networks section of the ‘top 100 awesome deep learning papers‘ collection. These are:

DRAW: A recurrent neural network for image generation, Gregor et al., 2015
Pixel recurrent neural networks, van den Oord et al., 2016
Auto-encoding variational Bayes, Kingma & Welling, 2014

原文链接:https://blog.acolyer.org/2017/03/03/rnn-models-for-image-generation/


3.【博客】An Interactive Tutorial on Numerical Optimization

简介:

Numerical Optimization is one of the central techniques in Machine Learning. For many problems it is hard to figure out the best solution directly, but it is relatively easy to set up a loss function that measures how good a solution is - and then minimize the parameters of that function to find the solution.

I ended up writing a bunch of numerical optimization routines back when I was first trying to learn javascript. Since I had all this code lying around anyway, I thought that it might be fun to provide some interactive visualizations of how these algorithms work.

The cool thing about this post is that the code is all running in the browser, meaning you can interactively set hyper-parameters for each algorithm, change the initial location, and change what function is being called to get a better sense of how these algorithms work.

All the code for this post is up on github if you want to check it out, it has both the minimization functions as well as all of the visualizations.

原文链接:http://www.benfrederickson.com/numerical-optimization/


4.【代码】Approximate Nearest Neighbor Search for Sparse Data in Python!

简介:

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Out of the box, PySparNN supports Cosine Distance (i.e. 1 - cosine_similarity).

PySparNN benefits:

  • Designed to be efficient on sparse data (memory & cpu).
  • Implemented leveraging existing python libraries (scipy & numpy).
  • Easily extended with other metrics: Manhattan, Euclidian, Jaccard, etc.
  • Max distance thresholds can be set at query time (not index time). I.e. return the k closest items no more than max_distance from the query point.
  • Supports incremental insertion of elements.

原文链接:https://github.com/facebookresearch/pysparnn#pysparnn


5.【博客 & 视频】A gentle introduction to PyTorch and TensorFlow with a Reddit link

简介:


This is the first post for this week. I will use it for the introduction of some Python libraries that are being widely adopted by the deep learning communities. I will also disclose today that The Information Age will change its weekly schedules of posts from 5 p/week to three p/week. The reason is that I plan to begin another project of a blog soon and I will be busy in the meantime. This new project will be somewhat closely related with most of the content I have been posting here, so the posts here will certainly gain even more with this diversified schedule. I intend to post Mondays, Wednesdays and Fridays, but if for some reason this order changes I will notice in advance, or I will feel free to mention the change in the relevant post.

Today I will share a video about the introduction of a course that lectures on the PyTorch and TensorFlow Python/C++ libraries, now taking deeper root at the deep learning and artificial intelligence communities. Further, below the video, I share a link to a fascinating post I found in the Reddit social media website, featuring a Q&A about the comparisons about the advantages and shortcomings of those two libraries, which I thought to be a highly appropriate readership for all involved or interested in these subjects. Some of the highlights are in bold quotes, as usual in this blog.

原文链接:https://theinformationageblog.wordpress.com/2017/03/06/a-gentle-introduction-to-pytorch-and-tensorflow-with-a-reddit-link/


本文转载自:http://www.jianshu.com/p/27768546406a

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
【Java每日一题】20170308

20170307问题解析请点击今日问题下方的“【Java每日一题】20170308”查看(问题解析在公众号首发,公众号ID:weknow619) 今日问题: 请问主程序运行结果是什么?(点击以下“【Java每日一题...

weknow
2017/03/08
0
0
免费教材丨第48期:业界大牛中文教学视频《深度学习:进阶》第25-28讲

小编说 我们将继续发放彭老师的《深度学习:进阶》课程,本期发放第25-28讲,本教材由麦子学院提供,现表示感谢。本教学视频为中文教学,代码讲解为主,通俗易懂哦! 彭亮简介 美国犹他州立大...

r1unw1w
2017/10/29
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
【Java每日一题】20170309

20170308问题解析请点击今日问题下方的“【Java每日一题】20170309”查看(问题解析在公众号首发,公众号ID:weknow619) 今日问题: 请问主程序运行结果是什么?(点击以下“【Java每日一题...

weknow
2017/03/09
0
0

没有更多内容

加载失败,请刷新页面

加载更多

Hbase Schema 模型设计注意事项及示例

一、Hbase 数据模型概述 HBase的数据模型也是由表组成,每一张表里也有数据行和列,但是在HBase数据库中的行和列又和关系型数据库的稍有不同。 表(Table): HBase会将数据组织成一张表,表名必...

PeakFang-BOK
30分钟前
1
0
Blockathon(2018)上海竞赛项目成果今天揭晓

开幕式现场 10月19日,Blockathon(2018)上海在黄浦区P2联合创业办公社举行,本次活动由50名区块链开发者组成9支参赛队伍,来自国内外优秀区块链开发团队的20名技术专家担任导师及裁判。9支队...

HiBlock
33分钟前
0
0
微信小程序开发系列六:微信框架API的调用

微信小程序开发系列教程 微信小程序开发系列一:微信小程序的申请和开发环境的搭建 微信小程序开发系列二:微信小程序的视图设计 微信小程序开发系列三:微信小程序的调试方法 微信小程序开发...

JerryWang_SAP
53分钟前
4
0
5 个用 Python 编写 web 爬虫的方法

大家在读爬虫系列的帖子时常常问我怎样写出不阻塞的爬虫,这很难,但可行。通过实现一些小策略可以让你的网页爬虫活得更久。那么今天我就将和大家讨论这方面的话题。 我刚整理了一套2018最新...

糖宝lsh
53分钟前
6
0
docker安装redis、mongodb、mysql等

一、启动docker服务,设置镜像: systemctl start dockervi /etc/docker/daemon.json{ "registry-mirrors": ["https://registry.docker-cn.com"]} 二、下拉镜像: 在镜像中心h...

狼王黄师傅
今天
6
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部