文档章节

人工智能资料库:第59辑(20170607)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:26
字数 747
阅读 3
收藏 0
点赞 0
评论 0

1.【博客】Transfer learning & The art of using Pre-trained Models in Deep Learning

简介:

Neural networks are a different breed of models compared to the supervised machine learning algorithms. Why do I say so? There are multiple reasons for that, but the most prominent is the cost of running algorithms on the hardware.

In today’s world, RAM on a machine is cheap and is available in plenty. You need hundreds of GBs of RAM to run a super complex supervised machine learning problem – it can be yours for a little investment / rent. On the other hand, access to GPUs is not that cheap. You need access to hundred GB VRAM on GPUs – it won’t be straight forward and would involve significant costs.

Now, that may change in future. But for now, it means that we have to be smarter about the way we use our resources in solving Deep Learning problems. Especially so, when we try to solve complex real life problems on areas like image and voice recognition. Once you have a few hidden layers in your model, adding another layer of hidden layer would need immense resources.

Thankfully, there is something called “Transfer Learning” which enables us to use pre-trained models from other people by making small changes. In this article, I am going to tell how we can use pre-trained models to accelerate our solutions.

原文链接:https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/


2.【代码】Thinc: Practical Machine Learning for NLP in Python

简介:

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0.
Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

原文链接:https://github.com/explosion/thinc


3.【博客】
Neural networks for algorithmic trading. Multivariate time series

简介:


In previous post we discussed several ways to forecast financial time series: how to normalize data, make prediction in the form of real value or binary variable and how to deal with overfitting on highly noisy data. But what we skipped (on purpose) — is that our .csv file with prices basically has much more data that we may use. In last post only close prices with some transformation were used, but what can happen if we will consider also high, low, open prices and volume of every historical day? This leads us to working with multidimensional, e.g. multivariate time series, where on every time stamp we have more than just one variable — in our case we will work with whole OHLCV tuple.

原文链接:https://medium.com/@alexrachnog/neural-networks-for-algorithmic-trading-2-1-multivariate-time-series-ab016ce70f57


4.【博客】How Zendesk Serves TensorFlow Models in Production

简介:

At Zendesk we are developing a series of machine learning products, the most recent of which is Automatic Answers. It uses machine learning to interpret user questions and responds with relevant knowledge base articles. When a customer has a question, complaint or enquiry, they may submit their request online. Once their request is received, Automatic Answers will analyse the request and suggest relevant articles which may best assist with the customer’s request via email.

原文链接:https://medium.com/zendesk-engineering/how-zendesk-serves-tensorflow-models-in-production-751ee22f0f4b


5.【博客】Image Segmentation using deconvolution layer in Tensorflow

简介:

Image segmentation is just one of the many use cases of this layer. In any type of computer vision application where resolution of final output is required to be larger than input, this layer is the de-facto standard. This layer is used in very popular applications like Generative Adversarial Networks(GAN), image super-resolution, surface depth estimation from image, optical flow estimation etc. These are some direct applications of deconvolution layer. It has now also been deployed in other applications like fine-grained recogntion, object detection. In these use cases, the existing systems can use deconvolution layer to merge responses from different convolutional layers and can significantly boosts up their accuracy.

There are 4 main parts of this post:

  1. What is image segmentation?
  2. What is deconvolutional layer?
  3. Initialization strategy for deconvolutional layer.
  4. Writing a deconvolutional layer for Tensorflow.

原文链接:http://cv-tricks.com/image-segmentation/transpose-convolution-in-tensorflow/


本文转载自:http://www.jianshu.com/p/cc939baf298d

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
央行加强互联网金融风险防范化解 腾讯为金融云入股长亮科技 | AI金融评论晚报

央行:继续做好互联网金融风险防范化解 雷锋网(公众号:雷锋网)AI金融评论消息,人民银行相关负责人23日在防范和处置非法集资法律政策宣传座谈会上介绍,当前互联网金融领域非法集资形势呈现...

AI金融评论
04/23
0
0
百度市值暴涨70多亿,看来京东梦碎了!

  【IT168 评论】10天前,京东市值与百度仅差一个涨停板。10天之内,百度市值大涨70多亿美金。截至美东时间7月3日13:00:00,百度总市值为624.98亿,京东总市值为551.59亿。截至发稿前,双...

it168网站
2017/07/06
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
格莱美“陷落”了,看人工智能如何剥夺生活中的“惊喜”

  格莱美也“陷落“了,看人工智能如何剥夺生活中未知的”惊喜“?   第59届格莱美颁奖典礼在美国洛杉矶落下帷幕,英国歌手阿黛尔(Adele)横扫5项大奖成为赢家:《Hello》和《25》分别获得...

人工智能江湖
2017/02/14
0
0
格莱美也“陷落”了,看人工智能如何剥夺生活中的“惊喜”

  第59届格莱美颁奖典礼在美国洛杉矶落下帷幕,英国歌手阿黛尔(Adele)横扫5项大奖成为赢家:《Hello》和《25》分别获得赢得第59届最佳年度歌曲奖、年度最佳流行女歌手以及最佳流行专辑,追...

人工智能江湖
2017/02/14
0
0
人工智能、大数据、复杂系统学习

黑科技,人工智能前进之路势不可挡! “做大做强新兴产业集群,实施大数据发展行动,加强新一代人工智能研发应用。发展智能产业,拓展智能生活。” 人工智能已作为国家乃至全球新的经济增长动...

自学号
05/10
0
0
独家揭秘:2017中国人工智能与机器人创新大会大咖云集

2017中国人工智能与机器人创新大会将为您解读人工智能与机器人发展之策、就人工智能、机器人、大数据、物联网、云计算、移动互联等话题展开。 2017中国人工智能与机器人创新大会召开在即,行...

行者武松
2017/10/19
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

微信小程序Java登录流程(ssm实现具体功能和加解密隐私信息问题解决方案)

文章有不当之处,欢迎指正,如果喜欢微信阅读,你也可以关注我的微信公众号:好好学java,获取优质学习资源。 一、登录流程图 二、小程序客户端 doLogin:function(callback = () =>{}){let ...

公众号_好好学java
11分钟前
0
0
流利阅读笔记28-20180717待学习

“我不干了!” 英国脱欧大臣递交辞呈 雪梨 2018-07-17 1.今日导读 7 月 6 日,英国政府高官齐聚英国首相的官方乡间别墅——契克斯庄园,讨论起草了一份关于英国政府脱欧立场的白皮书。可是没...

aibinxiao
41分钟前
4
0
OSChina 周二乱弹 —— 理解超算排名这个事,竟然超出了很多人的智商

Osc乱弹歌单(2018)请戳(这里) 【今日歌曲】 @-冰冰棒- :分享Ed Sheeran/Beyoncé的单曲《Perfect Duet (with Beyoncé)》 《Perfect Duet (with Beyoncé)》- Ed Sheeran/Beyoncé 手机...

小小编辑
52分钟前
33
5
Android 获取各大音乐平台的真实下载地址

废话 电脑使用谷歌浏览器或者QQ浏览器的时候。。。。。。。说不清楚,还是看图吧 大概意思就是,只要网页上需要播放,只要能播放并且开始播放,这个过程就肯定会请求到相关的音乐资源,然后就...

她叫我小渝
今天
0
0
shell中的函数、shell中的数组、告警系统需求分析

shell中的函数 格式: 格式: function f_name() { command } 函数必须要放在最前面 示例1(用来打印参数) 示例2(用于定义加法) 示例3(用于显示IP) shell中的数组 shell中的数组1 定义数...

Zhouliang6
今天
2
0
用 Scikit-Learn 和 Pandas 学习线性回归

      对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。 1. 获取数据,定义问题     没有...

wangxuwei
今天
1
0
MAC安装MAVEN

一:下载maven压缩包(Zip或tar可选),解压压缩包 二:打开终端输入:vim ~/.bash_profile(如果找不到该文件新建一个:touch ./bash_profile) 三:输入i 四:输入maven环境变量配置 MAVEN_HO...

WALK_MAN
今天
0
0
33.iptables备份与恢复 firewalld的9个zone以及操作 service的操作

10.19 iptables规则备份和恢复 10.20 firewalld的9个zone 10.21 firewalld关于zone的操作 10.22 firewalld关于service的操作 10.19 iptables规则备份和恢复: ~1. 保存和备份iptables规则 ~2...

王鑫linux
今天
2
0
大数据教程(2.11):keeperalived+nginx高可用集群搭建教程

上一章节博主为大家介绍了目前大型互联网项目的系统架构体系,相信大家应该注意到其中很重要的一块知识nginx技术,在本节博主将为大家分享nginx的相关技术以及配置过程。 一、nginx相关概念 ...

em_aaron
今天
1
1
Apache Directory Studio连接Weblogic内置LDAP

OBIEE默认使用Weblogic内置LDAP管理用户及组。 要整理已存在的用户及组,此前办法是导出安全数据,文本编辑器打开认证文件,使用正则表达式获取用户及组的信息。 后来想到直接用Apache Dire...

wffger
今天
2
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部