文档章节

人工智能资料库:第62辑(20170617)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:26
字数 641
阅读 1
收藏 0

1.【博客】Playing a toy poker game with Reinforcement Learning

简介:

Reinforcement learning (RL) has had some high-profile successes lately, e.g. AlphaGo, but the basic ideas are fairly straightforward. Let’s try RL on our favorite toy problem: the heads-up no limit shove/fold game. This is a pedagogical post rather than a research write-up, so we’ll develop all of the ideas (and code!) more or less from scratch. Follow along in a Python3 Jupyter notebook!

原文链接:http://willtipton.com/coding/poker/2017/06/06/shove-fold-with-reinforcement-learning.html


2.【论文】SuperSpike: Supervised learning in multi-layer spiking neural networks

简介:

A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in-vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in-silico. Here we revisit the problem of supervised learning in temporally coding multi-layer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike-time patterns.

原文链接:https://arxiv.org/pdf/1705.11146.pdf


3.【博客】What Can't Deep Learning Do?

简介:

1/ What can’t deep learning do? Worth putting together a list of known failures to guide algorithmic development.

2/ Deep learning methods are known to fail at learning after small jitters to input. Think object recognition breaking when colors are swapped.

3/ Gradient based learning is quite slow. Takes many, many gradient descent steps to pick up patterns. Tough for high dimensional prediction.

4/ Deep learning methods are terrible at handling constraints. Not possible to find solutions satisfying constraints unlike linear programming.

5/ Training for complex models is quite unstable. Neural turing machines and GANs often don’t train well, with heavy dependence on rand seed.

......

原文链接:http://rbharath.github.io/what-cant-deep-learning-do/


4.【博客】8 Benefits of Customer Service Chatbots

简介:


We have all experienced the benefits and convenience of getting things done with just a tap on our phones. In today’s on-demand economy, our consumer expectations are higher than ever. If we don’t find answers or a resolution to our problems right away, we can easily move to the next brand. As a result, customer service departments play a key role for client retention and customer brand loyalty.

原文链接:https://blog.azumo.co/8-benefits-of-customer-service-chatbots-8c1b32e04096


5.【博客】Real-Time Stable Style Transfer for Videos

简介:

The paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge presents a technique for learning a style and applying it to other images. When used frame-by-frame on movies, the resulting stylized animations are of low quality. They suffer from extensive “popping”. We refer to popping as stylization features that are inconsistent from frame to frame. The stylized features (lines, strokes, colors) are present one frame but gone the next frame. The ‘artistic style transfer for videos’ video clearly shows the popping.

原文链接:https://elementai.github.io/research/2017/04/05/stable-style-transfer.html


本文转载自:http://www.jianshu.com/p/04cac8de7308

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
计算机科学家论文引用排名:LeCun终于晋身三巨头

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yH0VLDe8VG8ep9VGe/article/details/82598742 问耕 发自 凹非寺 量子位 出品 | 公众号 QbitAI “我又来吹牛了...

量子位
09/09
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0

没有更多内容

加载失败,请刷新页面

加载更多

SQL count(*) 和count(1)的区别

开发中经常会使用这两个聚合函数,作用都是用来统计记录行,今天查找资料发现,其实这两个函数并没有区别, 实践才是检验的标准,首先看执行计划(表是我自己建立的): 可以看到,两个执行计...

一曲图森破
19分钟前
1
0
ppwjs之bootstrap文字排版:字体设置

<!DOCTYPT html><html><head><meta http-equiv="content-type" content="text/html; charset=utf-8" /><title>ppwjs欢迎您</title><link rel="icon" href="/favicon.ico" ......

ppwjs
21分钟前
1
0
区块链100讲:详解区块链之P2P网络

1 P2P网络 如果我们简单来看 P2P 技术,它的应用领域已经非常广泛了,从流媒体到点对点通讯、从文件共享到协同处理,多种领域都有它的身影出现。 同样的,P2P 的网络协议也有很多,比较常见的...

HiBlock
36分钟前
0
0
74.expect脚本同步文件以及指定host同步文件 构建分发系统文件和命令

20.31 expect脚本同步文件: 在expect脚本中去实现在一台机器上把文件同步到另外一台机器上去。核心命令用的是rsync ~1.自动同步文件 #!/usr/bin/expect set passwd "123456" spawn rsync -a...

王鑫linux
今天
1
0
TypeScript项目引用(project references)

转发 TypeScript项目引用(project references) TypeScript新特性之项目引用(project references) 项目引用是TypeScript 3.0中的一项新功能,允许您将TypeScript程序构建为更小的部分。 通过这...

durban
今天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部