文档章节

人工智能资料库:第58辑(20170526)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:25
字数 562
阅读 2
收藏 0

1.【博客】A comprehensive beginners guide to Linear Algebra for Data Scientists

简介:

Table of contents

  1. Motivation – Why learn Linear Algebra?
  2. Representation of problems in Linear Algebra
    2.1. Visualising the problem: Line
    2.2. Complicate the problem
    2.3. Planes
  3. Matrix
    3.1 Terms related to Matrix
    3.2 Basic operations on Matrix
    3.3 Representing in Matrix form
  4. Solving the problem
    4.1. Row Echelon form
    4.2. Inverse of a Matrix
    4.2.1 Finding Inverse
    4.2.2 The power of Matrices: solving the equations in one go
    4.2.3 Use of Inverse in Data Science
  5. Eigenvalues and Eigenvectors
    5.1 Finding Eigenvectors
    5.2 Use of Eigenvectors in Data Science: PCA algorithm
  6. Singular Value Decomposition of a Matrix
  7. End Notes

原文链接:https://www.analyticsvidhya.com/blog/2017/05/comprehensive-guide-to-linear-algebra/


2.【博客】Image classification Api — deep learning

简介:

Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence.

原文链接:https://medium.com/@kashyapraval/image-classification-api-deep-learning-d0b0f67d0ce


3.【博客】Applying deep learning to real-world problems

简介:

deep learning. Three major drivers caused the breakthrough of (deep) neural networks: the availability of huge amounts of training data, powerful computational infrastructure, and advances in academia. Thereby deep learning systems start to outperform not only classical methods, but also human benchmarks in various tasks like image classification or face recognition. This creates the potential for many disruptive new businesses leveraging deep learning to solve real-world problems.

原文链接:https://medium.com/merantix/applying-deep-learning-to-real-world-problems-ba2d86ac5837


4.【博客】Deep, Deep Trouble

简介:

I am really confused. I keep changing my opinion on a daily basis, and I cannot seem to settle on one solid view of this puzzle. No, I am not talking about world politics or the current U.S. president, but rather something far more critical to humankind, and more specifically to our existence and work as engineers and researchers. I am talking about…deep learning.

While you might find the above statement rather bombastic and overstated, deep learning indeed raises several critical questions we must address. In the following paragraphs, I hope to expose one key conflict related to the emergence of this field, which is relevant to researchers in the image processing community.

原文链接:https://sinews.siam.org/Details-Page/deep-deep-trouble


5.【博客】Fitting Gaussian Process Models in Python

简介:

A common applied statistics task involves building regression models to characterize non-linear relationships between variables. It is possible to fit such models by assuming a particular non-linear functional form, such as a sinusoidal, exponential, or polynomial function, to describe one variable's response to the variation in another. Unless this relationship is obvious from the outset, however, it involves possibly extensive model selection procedures to ensure the most appropriate model is retained. Alternatively, a non-parametric approach can be adopted by defining a set of knots across the variable space and use a spline or kernel regression to describe arbitrary non-linear relationships. However, knot layout procedures are somewhat ad hoc and can also involve variable selection. A third alternative is to adopt a Bayesian non-parametric strategy, and directly model the unknown underlying function. For this, we can employ Gaussian process models.

原文链接:https://blog.dominodatalab.com/fitting-gaussian-process-models-python/?utm_content=buffer33709&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer


本文转载自:http://www.jianshu.com/p/f098b924d486

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
柯洁又一次输了人机大战:不敌国产AI 直言太无力

▼ 点击上方蓝字 关注网易智能 为你解读AI领域大公司大事件,新观点新应用 【网易智能讯 4月28日消息】昨日,第一届“吴清源杯”世界女子围棋赛暨2018世界人工智能围棋大赛在福州举行,中国知...

mcil9g4065q
04/28
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
移动互联网十年造梦记:相遇,见证与成长

1994年,中国通过一条64K的国际专线,全功能接入国际互联网,从此中国被国际上正式承认为真正拥有全功能Internet的国家,中国互联网时代从此开启; 此后的十几年,马云,马化腾,雷军,李彦宏...

Technews科技新报
04/22
0
0
首期腾讯AI加速器毕业 9个月项目总估值翻3倍

  4月11日晚,首期腾讯AI加速器毕业典礼在重庆举行。从上千个国内AI创业项目中精选出25个项目以及从海外AI大赛选拔出的4个项目经过9个月加速,整体估值从70亿增至200多亿,翻了近3倍。其中...

机器之心
04/13
0
0

没有更多内容

加载失败,请刷新页面

加载更多

白话SpringCloud | 第十章:路由网关(Zuul)进阶:过滤器、异常处理

前言 简单介绍了关于Zuul的一些简单使用以及一些路由规则的简单说明。而对于一个统一网关而言,需要处理各种各类的请求,对不同的url进行拦截,或者对调用服务的异常进行二次处理等等。今天,...

oKong
4分钟前
0
0
详解nohup和& 区别

详解nohup和& 区别 2017年11月29日 16:57:38 King-Long 阅读数:7266 版权声明:本文为博主原创文章,欢迎转载。 https://blog.csdn.net/u011095110/article/details/78666833 nohup 一、【解...

linjin200
16分钟前
0
0
Character的static方法

基本类型char的包装类是Character,使用的比较多,大家是比较熟悉的。 我只是觉得里面有很多static方法,平时不怎么用,学习一下怎么实现的,或许日后就用到了。 static int compare(char x,...

woshixin
16分钟前
0
0
正则介绍_sed

10月17日任务 9.4/9.5 sed sed工具 匹配打印 -n 只打印匹配行,不然其他行也会打印出来 p 打印(配合-n使用) [root@centos7 tmp]# sed -n '/root/'p passwd root:x:0:0:root:/root:/bin/ba...

robertt15
17分钟前
0
0
轻松解码类似eval(function(p,a,c,k,e,d){}))的JavaScript代码

轻松解码类似eval(function(p,a,c,k,e,d){}))的JavaScript代码 2013年05月22日 15:18:05 秋实先生 阅读数:14826 这里解码百度访问统计代码构造函数为示例: 百度访问统计代码JavaScript源码:...

_纵横捭阖_
25分钟前
1
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部