文档章节

人工智能资料库:第58辑(20170526)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:25
字数 562
阅读 2
收藏 0

1.【博客】A comprehensive beginners guide to Linear Algebra for Data Scientists

简介:

Table of contents

  1. Motivation – Why learn Linear Algebra?
  2. Representation of problems in Linear Algebra
    2.1. Visualising the problem: Line
    2.2. Complicate the problem
    2.3. Planes
  3. Matrix
    3.1 Terms related to Matrix
    3.2 Basic operations on Matrix
    3.3 Representing in Matrix form
  4. Solving the problem
    4.1. Row Echelon form
    4.2. Inverse of a Matrix
    4.2.1 Finding Inverse
    4.2.2 The power of Matrices: solving the equations in one go
    4.2.3 Use of Inverse in Data Science
  5. Eigenvalues and Eigenvectors
    5.1 Finding Eigenvectors
    5.2 Use of Eigenvectors in Data Science: PCA algorithm
  6. Singular Value Decomposition of a Matrix
  7. End Notes

原文链接:https://www.analyticsvidhya.com/blog/2017/05/comprehensive-guide-to-linear-algebra/


2.【博客】Image classification Api — deep learning

简介:

Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence.

原文链接:https://medium.com/@kashyapraval/image-classification-api-deep-learning-d0b0f67d0ce


3.【博客】Applying deep learning to real-world problems

简介:

deep learning. Three major drivers caused the breakthrough of (deep) neural networks: the availability of huge amounts of training data, powerful computational infrastructure, and advances in academia. Thereby deep learning systems start to outperform not only classical methods, but also human benchmarks in various tasks like image classification or face recognition. This creates the potential for many disruptive new businesses leveraging deep learning to solve real-world problems.

原文链接:https://medium.com/merantix/applying-deep-learning-to-real-world-problems-ba2d86ac5837


4.【博客】Deep, Deep Trouble

简介:

I am really confused. I keep changing my opinion on a daily basis, and I cannot seem to settle on one solid view of this puzzle. No, I am not talking about world politics or the current U.S. president, but rather something far more critical to humankind, and more specifically to our existence and work as engineers and researchers. I am talking about…deep learning.

While you might find the above statement rather bombastic and overstated, deep learning indeed raises several critical questions we must address. In the following paragraphs, I hope to expose one key conflict related to the emergence of this field, which is relevant to researchers in the image processing community.

原文链接:https://sinews.siam.org/Details-Page/deep-deep-trouble


5.【博客】Fitting Gaussian Process Models in Python

简介:

A common applied statistics task involves building regression models to characterize non-linear relationships between variables. It is possible to fit such models by assuming a particular non-linear functional form, such as a sinusoidal, exponential, or polynomial function, to describe one variable's response to the variation in another. Unless this relationship is obvious from the outset, however, it involves possibly extensive model selection procedures to ensure the most appropriate model is retained. Alternatively, a non-parametric approach can be adopted by defining a set of knots across the variable space and use a spline or kernel regression to describe arbitrary non-linear relationships. However, knot layout procedures are somewhat ad hoc and can also involve variable selection. A third alternative is to adopt a Bayesian non-parametric strategy, and directly model the unknown underlying function. For this, we can employ Gaussian process models.

原文链接:https://blog.dominodatalab.com/fitting-gaussian-process-models-python/?utm_content=buffer33709&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer


本文转载自:http://www.jianshu.com/p/f098b924d486

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
bluewind/vue-blu

Attention I'm very sorry about the lack of concern about this library Recently. So busy in doing other things and I have no time to maintain it. I will be back in 2 about months......

bluewind
2017/07/22
0
0
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
国行版HomePod售价2799元,本周五发售

(图片源自苹果中国官网截图) 整理 | 一一 出品 | AI科技大本营 去年 12 月,苹果表示将于今年年初在中国销售其 HomePod 智能音箱。1 月 14 日,苹果公司正式宣布,HomePod 将于 1 月 18 日...

AI科技大本营
前天
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0

没有更多内容

加载失败,请刷新页面

加载更多

postgres预写式日志的内核实现详解-heap2类型

导读: postgres预写式日志的内核实现详解-概述 postgres预写式日志的内核实现详解-wal记录结构 postgres预写式日志的内核实现详解-wal记录写入 postgres预写式日志的内核实现详解-wal记录读...

movead
17分钟前
0
0
ToolBar控件在C#开发APP中的使用方式【附案例源码】——Smobiler移动开发平台

控件说明 底部工具栏控件。 效果演示 其他效果 该界面为仿淘宝UI制作的一个简单的UI模板,源码获取方式请拉至文章末尾。 特色属性 属性 属性说明 Direction(相对布局) 容器主轴方向。 Flex...

amanda112
28分钟前
1
0
模块

AMD是"Asynchronous Module Definition"的缩写,意思就是"异步模块定义"。它采用异步方式加载模块,模块的加载不影响它后面语句的运行。所有依赖这个模块的语句,都定义在一个回调函数中,等...

gtandsn
35分钟前
1
0
代码之外的生存指南,这6本书助你提升软实力

上期盟主向大家推荐了6本技术类书籍,引起了热烈反响。那么,工作之余,还有哪些好书能够为你打开更多的精彩世界呢?本期,多位知名企业的技术大咖将继续为您带来好书推荐,在新的一年里,为...

安卓绿色联盟
38分钟前
3
0
5分钟用Jitpack发布开源库

作者: 菜刀文 Demo:https://github.com/helen-x/JitPackReleaseDemo 项目开发中会用到很多开源库, 他们一般通过Maven/Gradle依赖进来的. 演而优则唱,开发越来越溜以后, 你是否也蠢蠢欲动,想发...

SuShine
44分钟前
2
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部