文档章节

人工智能资料库:第30辑(20170211)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:25
字数 539
阅读 1
收藏 0

  1. 【博客】Understanding Agent Cooperation

简介:

We employ deep multi-agent reinforcement learning to model the emergence of cooperation. The new notion of sequential social dilemmas allows us to model how rational agents interact, and arrive at more or less cooperative behaviours depending on the nature of the environment and the agents’ cognitive capacity. The research may enable us to better understand and control the behaviour of complex multi-agent systems such as the economy, traffic, and environmental challenges.

原文链接:https://deepmind.com/blog/understanding-agent-cooperation/


2.【博客】From Bayesian Networks to Neural Networks

简介:


原文链接:http://stats.stackexchange.com/questions/260444/from-bayesian-networks-to-neural-networks


3.【论文】Learning to protect communications with adversarial neural cryptography

简介:

This paper manages to be both tremendous fun and quite thought-provoking at the same time. If I tell you that the central cast contains Alice, Bob, and Eve, you can probably already guess that we’re going to be talking about cryptography (that or reading the paper title ). But this isn’t cryptography as you know it, and nor is it cryptography intended to actually be used to protect any information – to criticise the paper on that front would be to miss the point in my view. Instead what we get is a really interesting twist on adversarial network training and a further demonstration of the kinds of things that such networks are able to learn.

原文链接:https://blog.acolyer.org/2017/02/10/learning-to-protect-communications-with-adversarial-neural-cryptography/


4.【代码】Train a deep learning net with OpenStreetMap features and satellite imagery

简介:

Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data.

DeepOSM can:

  • Download a chunk of satellite imagery
  • Download OSM data that shows roads/features for that area
  • Generate training and evaluation data
  • Display predictions of mis-registered roads in OSM data, or display raw predictions of ON/OFF

Running the code is as easy as install Docker, make dev, and run a script.

原文链接:https://github.com/trailbehind/DeepOSM


5.【博客】Adversarially Learned Inference

简介:

The adversarially learned inference (ALI) model is a deep directed generative model which jointly learns a generation network and an inference network using an adversarial process. This model constitutes a novel approach to integrating efficient inference with the generative adversarial networks (GAN) framework.

What makes ALI unique is that unlike other approaches to learning inference in deep directed generative models (like variational autoencoders (VAEs)), the objective function involves no explicit reconstruction loop. Instead of focusing on achieving a pixel-perfect reconstruction, ALI tends to produce believable reconstructions with interesting variations, albeit at the expense of making some mistakes in capturing exact object placement, color, style and (in extreme cases) object identity. This is a good thing, because 1) capacity is not wasted to model trivial factors of variation in the input, and 2) the learned features are more or less invariant to these trivial factors of variation, which is what is expected of good feature learning.

These strenghts are showcased via the semi-supervised learning tasks on SVHN and CIFAR10, where ALI achieves a performance competitive with state-of-the-art.

原文链接:https://ishmaelbelghazi.github.io/ALI/


本文转载自:http://www.jianshu.com/p/04c671a5678d

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
AI助力清华博士进入周杰伦战队,预告AI应用迎来黄金时代?

在最近播出的第三期《中国好声音》节目中,来自清华大学的博士宿涵改编了周杰伦的《止战之殇》,获得导师四转。与众不同的是,他改编歌曲的歌词是通过AI技术写出。 宿涵介绍,当他告诉机器 ...

AI科技大本营
09/07
0
0
资源 | 剑桥大学:156页PPT全景展示AI过去的12个月(附下载)

  转载自专知   作者:Nathan Benaich、Ian Hogarth      剑桥大学 Nathan Benaich 与 Ian Hogarth 博士共同发布关于人工智能最近 12 个月进展的报告,其中包含对新技术,人才流动,...

机器之心
07/03
0
0

没有更多内容

加载失败,请刷新页面

加载更多

HBase 表修复在线方式和离线方式

一、在线修复 1.1 使用检查命令 $ ./bin/hbase hbck 该命令可完整修复 HBase 元数据信息;存在有错误信息会进行输出; 也可以通过如下命令查看详细信息: $ ./bin/hbase hbck -details 1.2 ...

Ryan-瑞恩
10分钟前
0
0
redis 系列二 -- 常用命令

1.基础命令 info ping quit save dbsize select flushdb flushall 2.键命令 2.1 set 直接赋值 set a a 2.2 get 取值 get a 2.3 exists 是否存在 exists a 2.4 expire 设置剩余时间 秒 expire......

imbiao
41分钟前
1
0
php foreach

<?php// 数组的引用$a=array(1,2,3,4,5);foreach($a as $key=>&$value){$value=$value*2;}print_r($a);echo " $key -------------------$value\r\n";/** * ...

小张525
50分钟前
1
0
12-利用思维导图梳理JavaSE-多线程

12-利用思维导图梳理JavaSE-多线程 主要内容 1.线程概念 2.线程开发 3.线程的状态 4.线程的同步和死锁 5.Java5.0并发库类 QQ/知识星球/个人WeChat/公众号二维码 本文为原创文章,如果对你有一...

飞鱼说编程
今天
0
0
JAVA集合之ArrayList

一、前言 Java 集合类提供了一套设计良好的支持对一组对象进行操作的接口和类,JAVA常用的集合接口有4类,分别是: Collection:代表一组对象,每一个对象都是它的子元素 Set:不包含重复元素...

木木匠
今天
3
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部