文档章节

人工智能资料库:第34辑(20170215)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:25
字数 673
阅读 0
收藏 0

  1. 【博客】Can NLP Reveal Power Imbalances?

简介:

Last Friday, the NLP & Text-As-Data Seminar heard from Vinodkumar Prabhakaran, a postdoctoral fellow at Stanford University who is specializing in computational sociolinguistics. One of his research projects focuses on the workplace — today, 96% of all office communication, Prabhakaran explained, occurs through mediums like email. But although email may be more convenient, it has also resulted in more people speaking online in ways that they would not during face-to-face communication. For example, one may feel comfortable speaking more sharply over email than they usually would in person, thanks to the detached, quasi-anonymity of a digital screen.

原文链接:https://medium.com/@NYUDataScience/can-nlp-reveal-power-imbalances-5d1a6d5ea9a1#.v9f3wgf89


2.【paper & talk】Cross-Language Text Classification using Structural Correspondence Learning

简介:

We present a new approach to crosslanguage text classification that builds on structural correspondence learning, a recently proposed theory for domain adaptation. The approach uses unlabeled documents, along with a simple word translation oracle, in order to induce taskspecific, cross-lingual word correspondences. We report on analyses that reveal quantitative insights about the use of unlabeled data and the complexity of interlanguage
correspondence modeling. We conduct experiments in the field of cross-language sentiment classification, employing English as source language, and German, French, and Japanese as target languages. The results are convincing; they demonstrate both the robustness and the competitiveness of the presented ideas.

原文链接:https://f17c0eee-a-62cb3a1a-s-sites.googlegroups.com/site/peterprettenhofer/publications-3/acl10-clscl.pdf?attachauth=ANoY7cqOtyBPwJeBBUqYo4WjAnKra0VF56RBBttLoro6hhGIeiNeb9GseqFv2x4tOGGdFMTG8lSD8H7c0ip9qto-6JX3V6OUSdh-R19e-kan73D5hG_gjhmapslsbMDhXJveUpIvmQ3kcAeKPpxlTFKkKLYiSZq0XAOESOdozyhgk80f6_IIxXzPcA1f2e5z6iiwo0wbtRGT9NxgHmcJfUjqyhz-NvIj7ya_eY16QXZVn5cdjFWieWKUzOHY5BllzSkXhhSPKPUW&attredirects=0

Talk链接:https://f17c0eee-a-62cb3a1a-s-sites.googlegroups.com/site/peterprettenhofer/publications-3/acl10-clscl-talk.pdf?attachauth=ANoY7cp3ENIocZ1sFfam48SYDO8uZWDYHdtoOsyLmC5t5rTvyK-c6A5GuOdKUyNAbBcV_lgTAbX2vK_B3N61mEqFx25xwxWqTyacINBVv6-enfCSIgGOMXY0LUe_d5J8p-c9K2ZLvVJxPT4v41wHB5fZGgcfLM7vyPwp5Su6mF0UtheKI4eK8SuQmP3pZpzm3wfK5AFk_NEYiICNbcuCsRAzI_Y9yddty69IFoaxuLdFswY4dlLk61GjgJ5pdy2EPVL3r1mqJXrR&attredirects=0


3.【博客】Text Mining in R: A Tutorial

简介:

This tutorial was built for people who wanted to learn the essential tasks required to process text for meaningful analysis in R, one of the most popular and open source programming languages for data science. At the end of this tutorial, you’ll have developed the skills to read in large files with text and derive meaningful insights you can share from that analysis. You’ll have learned how to do text mining in R, an essential data mining tool. The tutorial is built to be followed along with tons of tangible code examples. The full repository with all of the files and data is here if you wish to follow along.

原文链接:https://www.springboard.com/blog/text-mining-in-r/


4.【博客】Cloud-Scale Text Classification with Convolutional Neural Networks on Microsoft Azure

简介:

Natural Language Processing (NLP) is one of the fields in which deep learning has made significant progress. Specifically, the area of text classification, where the objective is to categorize documents, paragraphs or individual sentences into classes, has attracted the interest of both industry and academia. Examples include determining what topic is discussed in a sentence or assessing whether the sentiment conveyed in a text passage is positive, negative or neutral. This information can be used by companies to define marketing strategy, generate leads or improve customer service.

This is the fourth blog showcasing deep learning applications on Microsoft’s Data Science Virtual Machine (DSVM) with GPUs using the R API of the deep learning library MXNet. The DSVM is a custom virtual machine image from Microsoft that comes pre-installed with popular data science tools for modeling and development activities.

原文链接:https://blogs.technet.microsoft.com/machinelearning/2017/02/13/cloud-scale-text-classification-with-convolutional-neural-networks-on-microsoft-azure/


5.【博客】Sparse coding: A simple exploration

简介:


Sparse coding is the study of algorithms which aim to learn a useful sparse representation of any given data. Each datum will then be encoded as a sparse code:

  • The algorithm only needs input data to learn the sparse representation. This is very useful since you can apply it directly on any kind of data, it is called unsupervised learning.
  • It will automatically find the representation without loosing any information (As if one could automatically reveals the intrinsic atoms of one’s data).

原文链接:https://blog.metaflow.fr/sparse-coding-a-simple-exploration-152a3c900a7c#.j4nitc2gn


本文转载自:http://www.jianshu.com/p/11148f16561e

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
免费教材丨第48期:业界大牛中文教学视频《深度学习:进阶》第25-28讲

小编说 我们将继续发放彭老师的《深度学习:进阶》课程,本期发放第25-28讲,本教材由麦子学院提供,现表示感谢。本教学视频为中文教学,代码讲解为主,通俗易懂哦! 彭亮简介 美国犹他州立大...

r1unw1w
2017/10/29
0
0
【今日AI】12月11日

【1分钟AI】 1、谷歌发布了一款AI工具 可以帮助基因组数据解读 2、广州AI研究院挂牌 入驻团队获免费实验室补贴最高可获1亿元 3、智联招聘:AI人才需求集中于一线城市 七成从业者月薪过万 4、...

Yetta000
2017/12/11
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

函数调用约定 (cdecl stdcall)

函数调用约定 (cdecl stdcall) 在 C 语言里,我们通过阅读函数声明,就知道怎么携带参数去调用函数,也能在函数体定义内使用这些参数。但是 CPU 并不直接完成函数调用的传参操作,这需要人为...

傅易
4分钟前
0
0
Python 核心编程 (全)

浅拷贝和深拷贝 1.浅拷贝:是对于一个对象的顶层拷贝,通俗的理解是:拷贝了引用,并没有拷贝内容。相当于把变量里面指向的一个地址给了另一个变量就是浅拷贝,而没有创建一个新的对象,如a=b...

代码打碟手
7分钟前
0
0
mysql5.7 修改datadir

mysql 的默认存储路径为 /var/lib/mysql ,修改后为 /data/mysql 关闭服务 service mysql stop 复制mysql 数据文件到新的目录 cp -rp /var/lib/mysql /data 查看原目录的权限,如果新目...

hotsmile
23分钟前
0
0
证书安装指引之Tomcat 证书部署

Tomcat 证书部署 0 申请证书 1 获取证书 如果申请证书时有填写私钥密码,下载可获得Tomcat文件夹,其中有密钥库 www.domain.com.jks; 如果没有填写私钥密码,证书下载包的Tomcat文件夹中包括...

吴伟祥
28分钟前
0
0
ConcurrentHashMap1.7和1.8的底层不同实现

1.Hashmap和HashTable在线程安全方面的优劣? Hashmap多线程会导致HashMap的Entry链表形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获取Entry。 Hash...

刘祖鹏
43分钟前
6
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部