文档章节

人工智能资料库:第61辑(20170616)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:25
字数 607
阅读 2
收藏 0

1.【代码】Visual Question Answering in Pytorch

简介:


This repo was made by Remi Cadene (LIP6) and Hedi Ben-Younes (LIP6-Heuritech), two PhD Students working on VQA at UPMC-LIP6 and their professors Matthieu Cord (LIP6) and Nicolas Thome (LIP6-CNAM). We developped this code in the frame of a research paper called MUTAN: Multimodal Tucker Fusion for VQA which is (as far as we know) the current state-of-the-art on the VQA-1 dataset.
The goal of this repo is two folds:

  • to make it easier to reproduce our results,
  • to provide an efficient and modular code base to the community for further research on other VQA datasets.

If you have any questions about our code or model, don't hesitate to contact us or to submit any issues. Pull request are welcome!

原文链接:https://github.com/Cadene/vqa.pytorch


2.【博客】Why Does Deep Learning Not Have a Local Minimum?

简介:


Yes, there is a ‘theoretical justification’, and has taken a couple decades to flush it out.

I will first point out, however, it has been observed in practice. This was pointed out by LeCun in his early work on LeNet, and is actually discussed in the ‘orange book’, “Pattern Classification” by David G. Stork, Peter E. Hart, and Richard O. Duda.

原文链接:http://www.kdnuggets.com/2017/06/deep-learning-local-minimum.html


3.【博客】Graph-based machine learning: Part I

简介:

During the seven-week Insight Data Engineering Fellows Program recent grads and experienced software engineers learn the latest open source technologies by building a data platform to handle large, real-time datasets.

Sebastien Dery (now a Data Science Engineer at Yewno) discusses his project on community detection on large datasets.

原文链接:https://blog.insightdatascience.com/graph-based-machine-learning-6e2bd8926a0


4.【博客】Deep Learning the Stock Market

简介:


In the past few months I’ve been fascinated with “Deep Learning”, especially its applications to language and text. I’ve spent the bulk of my career in financial technologies, mostly in algorithmic trading and alternative data services. You can see where this is going.

I wrote this to get my ideas straight in my head. While I’ve become a “Deep Learning” enthusiast, I don’t have too many opportunities to brain dump an idea in most of its messy glory. I think that a decent indication of a clear thought is the ability to articulate it to people not from the field. I hope that I’ve succeeded in doing that and that my articulation is also a pleasurable read.

原文链接:https://medium.com/@TalPerry/deep-learning-the-stock-market-df853d139e02


5.【论文】Deep Learning in Trading

简介:

Current state of the art

  1. LSTM is theholygrail of sequencepredictions.
    A major part of thefinancial modellingis sequenceprediction- whether that?s volatility modelsor volume modelsor thetoughest oneof all - returnprediction models. This is theunderlyingtask insuchproblems - Givenasequenceof values, can wepredict thenext number inthe sequence?
    LSTM modelsnaturally fit this criteria,becauseof its recursivenature.Additionally,thehiddenstateandthe memory cell tremendouslyhelpretaintheuseful featuresof thesequence.

  2. Featureengineeringis thethingof thepast intheeraof neural networks.
    Neural networksarereallygoodat comingup withfeaturesontheir own.A number of peopleinfinance work
    day-in-day-out incomingup withfeatures.Neural netsarepoisedtotakeover this segment of the market.

  3. Neural networksprovideaneasy way tocombine market dataandother datasources.
    Sinceneural netswork inthelatent space,it?s super easy tocombinedyour market datainput withother datasources
    you might have.That canbeanythingfrom sentiment analysis, summaryof SEC filings tovisual or audioinputs.

  4. Additionally,neural networksmakeit easy todo multivariate modelling wheretherearealot of relationships
    betweeninputs,andthereisatime-varyingnaturetoit.

  5. It?s important tounderstand when neural networksdonot work - theydon?t work if youdon?t haveenoughdata.
    Small datasetsarebottleneckswhenit comes toconvergence.Largedatasets come withcomputationproblems.

原文链接:https://qplumproduction.s3.amazonaws.com/uploads/file_download/pdf_file/17/deep-learning-in-trading.pdf


本文转载自:http://www.jianshu.com/p/c97a945124ab

AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
BAT机器学习面试题及解析(281-285题)

本系列作为国内首个AI题库,囊括绝大部分机器学习和深度学习的笔试面试题、知识点,可以作为机器学习自测题,也可以当做查漏补缺的资料库。七月在线AI题库(网页版及APP版)见“阅读原文” ...

t7sfokzord1jaymsfk4
2017/12/20
0
0
国行版HomePod售价2799元,本周五发售

(图片源自苹果中国官网截图) 整理 | 一一 出品 | AI科技大本营 去年 12 月,苹果表示将于今年年初在中国销售其 HomePod 智能音箱。1 月 14 日,苹果公司正式宣布,HomePod 将于 1 月 18 日...

AI科技大本营
01/14
0
0
BAT机器学习面试题及解析(271-275题)

本系列作为国内首个AI题库,囊括绝大部分机器学习和深度学习的笔试面试题、知识点,可以作为机器学习自测题,也可以当做查漏补缺的资料库。 271.SVM、LR、决策树的对比。 模型复杂度:SVM支持...

t7sfokzord1jaymsfk4
2017/12/14
0
0

没有更多内容

加载失败,请刷新页面

加载更多

只需一步,在Spring Boot中统一Restful API返回值格式与统一处理异常

统一返回值 在前后端分离大行其道的今天,有一个统一的返回值格式不仅能使我们的接口看起来更漂亮,而且还可以使前端可以统一处理很多东西,避免很多问题的产生。 比较通用的返回值格式如下:...

晓月寒丶
昨天
59
0
区块链应用到供应链上的好处和实际案例

区块链可以解决供应链中的很多问题,例如记录以及追踪产品。那么使用区块链应用到各产品供应链上到底有什么好处?猎头悬赏平台解优人才网小编给大家做个简单的分享: 使用区块链的最突出的优...

猎头悬赏平台
昨天
28
0
全世界到底有多少软件开发人员?

埃文斯数据公司(Evans Data Corporation) 2019 最新的统计数据(原文)显示,2018 年全球共有 2300 万软件开发人员,预计到 2019 年底这个数字将达到 2640万,到 2023 年达到 2770万。 而来自...

红薯
昨天
65
0
Go 语言基础—— 通道(channel)

通过通信来共享内存(Java是通过共享内存来通信的) 定义 func service() string {time.Sleep(time.Millisecond * 50)return "Done"}func AsyncService() chan string {retCh := mak......

刘一草
昨天
58
0
Apache Flink 零基础入门(一):基础概念解析

Apache Flink 的定义、架构及原理 Apache Flink 是一个分布式大数据处理引擎,可对有限数据流和无限数据流进行有状态或无状态的计算,能够部署在各种集群环境,对各种规模大小的数据进行快速...

Vincent-Duan
昨天
60
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部