文档章节

人工智能资料库:第33辑(20170214)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:25
字数 870
阅读 1
收藏 0
点赞 0
评论 0

  1. 【代码】A TensorFlow Implementation of Character Level Neural Machine Translation Using the Quasi-RNN

简介:

InBradbury et al., 2016(hereafter, the Paper), the authors introduce a new neural network model which they call the Quasi-RNN. Basically, it tries to benefit from both CNNs and RNNs by combining them. The authors conducted three experiments to evaluate the performance of the Q-RNN. Character level machine translation is one of them. After the Paper was published, some enthusiasts tried to reproduce the experiments as the authors didn't disclose their source codes. Now I'm happy to be one of them. To my best knowledge, this is the first TensorFlow implementation of character level machine translation based on the Paper.

原文链接:https://github.com/Kyubyong/quasi-rnn


2.【博客】Unfolding RNNs II

简介:

Thefirst articlein this series focused on the general mechanism of RNN, architectures, variants and applications. The objective was to abstract away the details and illustrate the high-level concepts in RNN. Naturally, the next step is to dive into the details. In this article, we will follow a bottom-up approach, starting with the basic recurrent operation, building up to a complete neural network which performs language modeling.

As we have seen in the previous article, the RNNs consist of states, which are updated every time step. The state, at time stept, is essentially a summary of the information in the input sequence tillt. At eacht, information flows from the current input and the previous state, to the current state. This flow of information can be controlled. This is called thegatingmechanism. Conceptually, a gate is a structure that selectively allows the flow of information from one point to another. In this context, we can employ multiple gates, to control information flow from the input to the current state, previous state to current state and from current state to output. Based on how gates are employed to control the information flow, we have multiple variants of RNNs.

原文链接:http://suriyadeepan.github.io/2017-02-13-unfolding-rnn-2/


3.【资料】Open Source Deep Learning Curriculum

简介:

This open-source Deep Learning curriculum is meant to be a starting point for everyone interested in seriously studying the field. Plugging into the stream of research papers, tutorials and books about deep learning mid-stream it is easy to feel overwhelmed and without a clear idea of where to start. Recognizing that all knowledge is hierarchical, advanced concepts building on more fundamental ones, I strove to put a list of resources that form a logical progression from fundamental to advanced.

Few universities offer an education that is on par with what you can find online these days. The people pioneering the field from industry and academia so openly and competently share their knowledge that the best curriculum is an open source one.

原文链接:http://www.deeplearningweekly.com/pages/open_source_deep_learning_curriculum


4.【博客】Bayesian Linear Regression (in PyMC) - a different way to think about regression

简介:


In this blog post, I'll approach this problem from a Bayesian point of view. Ordinary linear regression (as taught in introductory statistics textbooks) offers a recipe which works great under a few circumstances, but has a variety of weaknesses. These weaknesses include an extreme sensitivity to outliers, an inability to incorporate priors, and little ability to quantify uncertainty.

Bayesian linear regression (BLR) offers a very different way to think about things. Combined with some computation (and note - computationally it's a LOT harder than ordinary least squares), one can easily formulate and solve a very flexible model that addresses most of the problems with ordinary least squares.

原文链接:https://www.chrisstucchio.com/blog/2017/bayesian_linear_regression.html


5.【NLP & Brain】This is your brain on sentences

简介:


Researchers at the University of Rochester have, for the first time, decoded and predicted the brain activity patterns of word meanings within sentences, and successfully predicted what the brain patterns would be for new sentences.

The study used functional magnetic resonance imaging (fMRI) to measure human brain activation. “Using fMRI data, we wanted to know if given a whole sentence, can we filter out what the brain’s representation of a word is—that is to say, can we break the sentence apart into its word components, then take the components and predict what they would look like in a new sentence,” said Andrew Anderson, a research fellow who led the study as a member of the lab ofRajeev Raizada, assistant professor ofbrain and cognitive sciencesat Rochester.

“We found that we can predict brain activity patterns—not perfectly [on average 70% correct], but significantly better than chance,” said Anderson, The study is published in the journalCerebral Cortex.

Anderson and his colleagues say the study makes key advances toward understanding how information is represented throughout the brain. “First, we introduced a method for predicting the neural patterns of words within sentences—which is a more complex problem than has been addressed by previous studies,which have almost all focused on single words,” Anderson said. “And second, we devised a novel approach to map semantic characteristics of words that we then correlated to neural activity patterns.”

原文链接:http://www.rochester.edu/newscenter/this-is-your-brain-on-sentences/#.WKFxXwJXqLM.facebook


本文转载自:http://www.jianshu.com/p/973c7a7482c5

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
柯洁又一次输了人机大战:不敌国产AI 直言太无力

▼ 点击上方蓝字 关注网易智能 为你解读AI领域大公司大事件,新观点新应用 【网易智能讯 4月28日消息】昨日,第一届“吴清源杯”世界女子围棋赛暨2018世界人工智能围棋大赛在福州举行,中国知...

mcil9g4065q
04/28
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
CB Insights发布AI创业公司100榜单 ,7家中国公司上榜,两家二次登榜

来源:36氪 概要:近日,硅谷知名数据公司 CB Insights 在美国旧金山发布了第二届全球最强 AI 创业公司榜单AI 100。旷视科技、出门问问、今日头条、英语流利说、优必选、商汤科技以及寒武纪上...

cf2suds8x8f0v
2017/12/17
0
0
人工智能、大数据、复杂系统学习

黑科技,人工智能前进之路势不可挡! “做大做强新兴产业集群,实施大数据发展行动,加强新一代人工智能研发应用。发展智能产业,拓展智能生活。” 人工智能已作为国家乃至全球新的经济增长动...

自学号
05/10
0
0
人工智能有“天花板” 传统产业要“+科技”——知名企业家激战“新经济”

(原标题:人工智能有“天花板” 传统产业要“+科技”——知名企业家激战“新经济”) 中国证券网讯 据新华社12月5日消息,“携手新时代,共话新经济”,第四届世界互联网大会上,多位企业家...

上海证券报·中国证券网
2017/12/05
0
0
中国抢下人工智能先手棋:位列全球第一梯队 企业数全球第二

北京、上海、南昌等地火车站启用人脸识别系统,“刷脸进站”仅需3秒;深圳铁路警方组成“机器人警察编队”,为春运保驾护航;12306官网开发图形验证码,定向锁定“黄牛”…… 今年春运,“人...

澎湃新闻
02/22
0
0
科学家说:AI有加强现存偏见的可能

桑斯坦在《网络共和国》当中提出了算法影响我们的认知世界、并在《信息乌托邦》当中第一次明确提出了算法使人形成“信息茧房”的危害。这是算法对于人脑的影响,而算法应用于人工智能中,也让...

玄学酱
04/13
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

【面试题】盲人坐飞机

有100位乘客乘坐飞机,其中有一位是盲人,每位乘客都按自己的座位号就坐。由于盲人看不见自己的座位号,所以他可能会坐错位置,而自己的座位被占的乘客会随便找个座位就坐。问所有乘客都坐对...

garkey
45分钟前
0
0
谈谈神秘的ES6——(二)ES6的变量

谈谈神秘的ES6——(二)ES6的变量 我们在《零基础入门JavaScript》的时候就说过,在ES5里,变量是有弊端的,我们先来回顾一下。 首先,在ES5中,我们所有的变量都是通过关键字var来定义的。...

JandenMa
今天
1
0
arts-week1

Algorithm 594. Longest Harmonious Subsequence - LeetCode 274. H-Index - LeetCode 219. Contains Duplicate II - LeetCode 217. Contains Duplicate - LeetCode 438. Find All Anagrams ......

yysue
今天
0
0
NNS拍卖合约

前言 关于NNS的介绍,这里就不多做描述,相关的信息可以查看NNS的白皮书http://doc.neons.name/zh_CN/latest/nns_background.html。 首先nns中使用的竞价货币是sgas,关于sgas介绍可以戳htt...

红烧飞鱼
今天
1
0
Java IO类库之管道流PipeInputStream与PipeOutputStream

一、java管道流介绍 在java多线程通信中管道通信是一种重要的通信方式,在java中我们通过配套使用管道输出流PipedOutputStream和管道输入流PipedInputStream完成线程间通信。多线程管道通信的...

老韭菜
今天
0
0
用Python绘制红楼梦词云图,竟然发现了这个!

Python在数据分析中越来越受欢迎,已经达到了统计学家对R的喜爱程度,Python的拥护者们当然不会落后于R,开发了一个个好玩的数据分析工具,下面我们来看看如何使用Python,来读红楼梦,绘制小...

猫咪编程
今天
1
0
Java中 发出请求获取别人的数据(阿里云 查询IP归属地)

1.效果 调用阿里云的接口 去定位IP地址 2. 代码 /** * 1. Java中远程调用方法 * http://localhost:8080/mavenssm20180519/invokingUrl.action * @Title: invokingUrl * @Description: * @ret......

Lucky_Me
今天
1
0
protobuf学习笔记

相关文档 Protocol buffers(protobuf)入门简介及性能分析 Protobuf学习 - 入门

OSC_fly
昨天
0
0
Mybaties入门介绍

Mybaties和Hibernate是我们在Java开发中应用的比较多的两个ORM框架。当然,目前Mybaties正在慢慢取代Hibernate,这是因为相比较Hibernate而言Mybaties性能更好,响应更快,更加灵活。我们在开...

王子城
昨天
2
0
编程学习笔记之python深入之装饰器案例及说明文档[图]

编程学习笔记之python深入之装饰器案例及说明文档[图] 装饰器即在不对一个函数体进行任何修改,以及不改变整体的原本意思的情况下,增加函数功能的新函数,因为这个新函数对旧函数进行了装饰...

原创小博客
昨天
1
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部