文档章节

人工智能资料库:第33辑(20170214)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:25
字数 870
阅读 2
收藏 0

  1. 【代码】A TensorFlow Implementation of Character Level Neural Machine Translation Using the Quasi-RNN

简介:

InBradbury et al., 2016(hereafter, the Paper), the authors introduce a new neural network model which they call the Quasi-RNN. Basically, it tries to benefit from both CNNs and RNNs by combining them. The authors conducted three experiments to evaluate the performance of the Q-RNN. Character level machine translation is one of them. After the Paper was published, some enthusiasts tried to reproduce the experiments as the authors didn't disclose their source codes. Now I'm happy to be one of them. To my best knowledge, this is the first TensorFlow implementation of character level machine translation based on the Paper.

原文链接:https://github.com/Kyubyong/quasi-rnn


2.【博客】Unfolding RNNs II

简介:

Thefirst articlein this series focused on the general mechanism of RNN, architectures, variants and applications. The objective was to abstract away the details and illustrate the high-level concepts in RNN. Naturally, the next step is to dive into the details. In this article, we will follow a bottom-up approach, starting with the basic recurrent operation, building up to a complete neural network which performs language modeling.

As we have seen in the previous article, the RNNs consist of states, which are updated every time step. The state, at time stept, is essentially a summary of the information in the input sequence tillt. At eacht, information flows from the current input and the previous state, to the current state. This flow of information can be controlled. This is called thegatingmechanism. Conceptually, a gate is a structure that selectively allows the flow of information from one point to another. In this context, we can employ multiple gates, to control information flow from the input to the current state, previous state to current state and from current state to output. Based on how gates are employed to control the information flow, we have multiple variants of RNNs.

原文链接:http://suriyadeepan.github.io/2017-02-13-unfolding-rnn-2/


3.【资料】Open Source Deep Learning Curriculum

简介:

This open-source Deep Learning curriculum is meant to be a starting point for everyone interested in seriously studying the field. Plugging into the stream of research papers, tutorials and books about deep learning mid-stream it is easy to feel overwhelmed and without a clear idea of where to start. Recognizing that all knowledge is hierarchical, advanced concepts building on more fundamental ones, I strove to put a list of resources that form a logical progression from fundamental to advanced.

Few universities offer an education that is on par with what you can find online these days. The people pioneering the field from industry and academia so openly and competently share their knowledge that the best curriculum is an open source one.

原文链接:http://www.deeplearningweekly.com/pages/open_source_deep_learning_curriculum


4.【博客】Bayesian Linear Regression (in PyMC) - a different way to think about regression

简介:


In this blog post, I'll approach this problem from a Bayesian point of view. Ordinary linear regression (as taught in introductory statistics textbooks) offers a recipe which works great under a few circumstances, but has a variety of weaknesses. These weaknesses include an extreme sensitivity to outliers, an inability to incorporate priors, and little ability to quantify uncertainty.

Bayesian linear regression (BLR) offers a very different way to think about things. Combined with some computation (and note - computationally it's a LOT harder than ordinary least squares), one can easily formulate and solve a very flexible model that addresses most of the problems with ordinary least squares.

原文链接:https://www.chrisstucchio.com/blog/2017/bayesian_linear_regression.html


5.【NLP & Brain】This is your brain on sentences

简介:


Researchers at the University of Rochester have, for the first time, decoded and predicted the brain activity patterns of word meanings within sentences, and successfully predicted what the brain patterns would be for new sentences.

The study used functional magnetic resonance imaging (fMRI) to measure human brain activation. “Using fMRI data, we wanted to know if given a whole sentence, can we filter out what the brain’s representation of a word is—that is to say, can we break the sentence apart into its word components, then take the components and predict what they would look like in a new sentence,” said Andrew Anderson, a research fellow who led the study as a member of the lab ofRajeev Raizada, assistant professor ofbrain and cognitive sciencesat Rochester.

“We found that we can predict brain activity patterns—not perfectly [on average 70% correct], but significantly better than chance,” said Anderson, The study is published in the journalCerebral Cortex.

Anderson and his colleagues say the study makes key advances toward understanding how information is represented throughout the brain. “First, we introduced a method for predicting the neural patterns of words within sentences—which is a more complex problem than has been addressed by previous studies,which have almost all focused on single words,” Anderson said. “And second, we devised a novel approach to map semantic characteristics of words that we then correlated to neural activity patterns.”

原文链接:http://www.rochester.edu/newscenter/this-is-your-brain-on-sentences/#.WKFxXwJXqLM.facebook


本文转载自:http://www.jianshu.com/p/973c7a7482c5

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
【Java每日一题】20170214

20170213问题解析请点击今日问题下方的“【Java每日一题】20170214”查看(问题解析在公众号首发,公众号ID:weknow619) 今日问题: 请问主程序输出结果是什么?(点击以下“【Java每日一题...

weknow
2017/02/14
0
0
【Java每日一题】20170215

20170214问题解析请点击今日问题下方的“【Java每日一题】20170215”查看(问题解析在公众号首发,公众号ID:weknow619) 今日问题: 请问主程序能否正常编译输出结果?(点击以下“【Java每...

weknow
2017/02/15
0
0
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
国行版HomePod售价2799元,本周五发售

(图片源自苹果中国官网截图) 整理 | 一一 出品 | AI科技大本营 去年 12 月,苹果表示将于今年年初在中国销售其 HomePod 智能音箱。1 月 14 日,苹果公司正式宣布,HomePod 将于 1 月 18 日...

AI科技大本营
01/14
0
0

没有更多内容

加载失败,请刷新页面

加载更多

开始看《Java学习笔记》

虽然书买了很久,但一直没看。这其中也写过一些Java程序,但都是基于IDE的帮助和对C#的理解来写的,感觉不踏实。 林信良的书写得蛮好的,能够帮助打好基础,看得出作者是比较用心的。 第1章概...

max佩恩
昨天
9
0
Redux 三大原则

1.单一数据源 在传统的MVC架构中,我们可以根据需要创建无数个Model,而Model之间可以互相监听、触发事件甚至循环或嵌套触发事件,这些在Redux中都是不被允许的。 因为在Redux的思想里,一个...

wenxingjun
昨天
6
0
跟我学Spring Cloud(Finchley版)-12-微服务容错三板斧

至此,我们已实现服务发现、负载均衡,同时,使用Feign也实现了良好的远程调用——我们的代码是可读、可维护的。理论上,我们现在已经能构建一个不错的分布式应用了,但微服务之间是通过网络...

周立_ITMuch
昨天
4
0
XML

学习目标  能够说出XML的作用  能够编写XML文档声明  能够编写符合语法的XML  能够通过DTD约束编写XML文档  能够通过Schema约束编写XML文档  能够通过Dom4j解析XML文档 第1章 xm...

stars永恒
昨天
2
0
RabbitMQ学习(2)

1. 生产者客户端 void basicPublish(String exchange, String routingKey, boolean mandatory, boolean immediate, BasicProperties props, byte[] body) 1. 在生产者客户端发送消息时,首先......

江左煤郎
昨天
4
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部