文档章节

人工智能资料库:第57辑(20170525)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:24
字数 394
阅读 2
收藏 0

1.【博客】How to Build a Recurrent Neural Network in TensorFlow

简介:

In this tutorial I’ll explain how to build a simple working Recurrent Neural Network in TensorFlow. This is the first in a series of seven parts where various aspects and techniques of building Recurrent Neural Networks in TensorFlow are covered. A short introduction to TensorFlow is available here. For now, let’s get started with the RNN!

原文链接:http://www.kdnuggets.com/2017/04/build-recurrent-neural-network-tensorflow.html


2.【博客】Overview of Artificial Intelligence and Role of Natural Language Processing in Big Data

简介:

Natural Language Processing (NLP) is “ability of machines to understand and interpret human language the way it is written or spoken”.
The objective of NLP is to make computer/machines as intelligent as human beings in understanding language.

原文链接:https://www.xenonstack.com/blog/overview-of-artificial-intelligence-and-role-of-natural-language-processing-in-big-data


3.【代码】Deep Image Analogy

简介:

eep Image Analogy is a technique to find semantically-meaningful dense correspondences between two input images. It adapts the notion of image analogy with features extracted from a Deep Convolutional Neural Network.
Deep Image Analogy is initially described in a SIGGRAPH 2017 paper


原文链接:https://github.com/msracver/Deep-Image-Analogy


4.【博客】Convolutional Methods for Text

简介:

  • RNNS work great for text but convolutions can do it faster
  • Any part of a sentence can influence the semantics of a word. For that reason we want our network to see the entire input at once
  • Getting that big a receptive can make gradients vanish and our networks fail
  • We can solve the vanishing gradient problem with DenseNets or Dilated Convolutions
  • Sometimes we need to generate text. We can use “deconvolutions” to generate arbitrarily long outputs.

原文链接:https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f


5.【博客】Using Long Short-Term Memory Networks and TensorFlow for Image Captioning

简介:

From this blog post, you will learn how to enable a machine to describe what is shown in an image and generate a caption for it, using long short-term memory networks and TensorFlow. You will also find out how to make use of TensorBoard for visualizing graphs, better understand what’s under the hood, and debug the performance of a model if necessary.

原文链接:https://becominghuman.ai/using-long-short-term-memory-networks-and-tensorflow-for-image-captioning-3dab5f86d976


本文转载自:http://www.jianshu.com/p/8a2b276ecb0a

共有 人打赏支持
AllenOR灵感
粉丝 11
博文 2635
码字总数 83001
作品 0
程序员
私信 提问
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能资料库:第72辑(20171203)

1.【会议】Bayesian Deep Learning 简介: While deep learning has been revolutionary for machine learning, most modern deep learning models cannot represent their uncertainty nor......

chen_h
2017/12/03
0
0
国行版HomePod售价2799元,本周五发售

(图片源自苹果中国官网截图) 整理 | 一一 出品 | AI科技大本营 去年 12 月,苹果表示将于今年年初在中国销售其 HomePod 智能音箱。1 月 14 日,苹果公司正式宣布,HomePod 将于 1 月 18 日...

AI科技大本营
01/14
0
0
阿里云批量发送短信功能测试

package com.yongjie.ZhiJianSbpt.sms; import java.text.SimpleDateFormat; import java.util.Date; import com.aliyuncs.DefaultAcsClient; import com.aliyuncs.IAcsClient; import com.a......

笑容掩饰爱
2017/07/15
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0

没有更多内容

加载失败,请刷新页面

加载更多

开始看《Java学习笔记》

虽然书买了很久,但一直没看。这其中也写过一些Java程序,但都是基于IDE的帮助和对C#的理解来写的,感觉不踏实。 林信良的书写得蛮好的,能够帮助打好基础,看得出作者是比较用心的。 第1章概...

max佩恩
昨天
11
0
Redux 三大原则

1.单一数据源 在传统的MVC架构中,我们可以根据需要创建无数个Model,而Model之间可以互相监听、触发事件甚至循环或嵌套触发事件,这些在Redux中都是不被允许的。 因为在Redux的思想里,一个...

wenxingjun
昨天
7
0
跟我学Spring Cloud(Finchley版)-12-微服务容错三板斧

至此,我们已实现服务发现、负载均衡,同时,使用Feign也实现了良好的远程调用——我们的代码是可读、可维护的。理论上,我们现在已经能构建一个不错的分布式应用了,但微服务之间是通过网络...

周立_ITMuch
昨天
4
0
XML

学习目标  能够说出XML的作用  能够编写XML文档声明  能够编写符合语法的XML  能够通过DTD约束编写XML文档  能够通过Schema约束编写XML文档  能够通过Dom4j解析XML文档 第1章 xm...

stars永恒
昨天
2
0
RabbitMQ学习(2)

1. 生产者客户端 void basicPublish(String exchange, String routingKey, boolean mandatory, boolean immediate, BasicProperties props, byte[] body) 1. 在生产者客户端发送消息时,首先......

江左煤郎
昨天
4
0

没有更多内容

加载失败,请刷新页面

加载更多

返回顶部
顶部