文档章节

人工智能资料库:第36辑(20170219)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:23
字数 623
阅读 4
收藏 0

  1. 【代码】A PyTorch Implementation for Densely Connected Convolutional Networks (DenseNets)

简介:

This repository contains a PyTorch implementation of the paper Densely Connected Convolutional Networks. The code is based on the excellent PyTorch example for training ResNet on Imagenet.
The detault setting for this repo is a DenseNet-BC (with bottleneck layers and channel reduction), 100 layers, a growth rate of 12 and batch size 128.
The Official torch implementaion contains further links to implementations in other frameworks.

原文链接:https://github.com/andreasveit/densenet-pytorch


2.【博客】The Two Paths from Natural Language Processing to Artificial Intelligence

简介:

Why isn’t Siri smarter? AI has accelerated in recent years, especially with deep learning, but current chatbots are an embarrassment. Computers still can’t read or converse intelligently. Their deficiency is disappointing because we want to interact with our world using natural language, and we want computers to read all of those documents out there so they can retrieve the best ones, answer our questions, and summarize what is new.

To understand our language, computers need to know our world. They need to be able to answer questions like “Why does it only rain outside?” and “If a book is on a table, and you push the table, what happens?”

原文链接:https://medium.com/intuitionmachine/the-two-paths-from-natural-language-processing-to-artificial-intelligence-d5384ddbfc18#.8y8efxe3w


3.【博客】DeepMind just published a mind blowing paper: PathNet.

简介:

Potentially describing how general artificial intelligence will look like.

Since scientists started building and training neural networks, there has always been one barrier called transfer learning. Transfer learning is the capability of an AI to learn from different tasks and apply its pre-learned knowledge to a totally new task. It is implicit that with this precedent knowledge, the AI will perform better and train faster than de novo neural networks on the new task.

DeepMind is maybe on the path of solving this with PathNet. PathNet is a network of neural networks, trained using both stochastic gradient descent and a genetic selection method.

原文链接:https://medium.com/@thoszymkowiak/deepmind-just-published-a-mind-blowing-paper-pathnet-f72b1ed38d46#.7idkn0enj


4.【论文 & 代码】ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes

简介:

A key requirement for leveraging supervised deep learning methods is the availability of large, labeled datasets. Unfortunately, in the context of RGB-D scene understanding, very little data is available – current datasets cover a small range of scene views and have limited semantic annotations. To address this issue, we introduce ScanNet, an RGB-D video dataset containing 2.5M views in 1513 scenes annotated with 3D camera poses, surface reconstructions, and semantic segmentations. To collect this data, we designed an easy-to-use and scalable RGB-D capture system that includes automated surface reconstruction and crowdsourced semantic annotation.We show that using this data helps achieve state-of-the-art performance on several 3D scene understanding tasks, including 3D object classification, semantic voxel labeling, and CAD model retrieval. The dataset is freely available at http://www.scan-net.org

原文链接:http://www.scan-net.org/


5.【博客】TRANSFER LEARNING IN TENSORFLOW USING A PRE-TRAINED INCEPTION-RESNET-V2 MODEL

简介:

In this guide, we will see how we can perform transfer learning using the official pre-trained model offered by Google, which can be found in TensorFlow’s model library and downloaded here. As I have mentioned in my previous post on creating TFRecord files, one thing that I find really useful in using TensorFlow-slim over other deep learning libraries is the ready access to the best pretrained models offered by Google. This guide will build upon my previous guide on creating TFRecord files and show you how to use the inception-resnet-v2 model released by Google.

原文链接:https://kwotsin.github.io/tech/2017/02/11/transfer-learning.html


本文转载自:http://www.jianshu.com/p/5b5b60f32ee0

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
【今日AI】12月3日

【1分钟AI】 1、全球第一批无人驾驶公交在深圳开放道路试运行 2、百度宣布语音技术全系列永久免费 AI免费战再升级 3、今日头条宣布成立技术战略委员会,三位院士科学家为首批委员 4、AI助力版...

Yetta000
2017/12/03
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

python标准输入输出

input() 读取键盘输入 input() 函数从标准输入读入一行文本,默认的标准输入是键盘。 input 可以接收一个Python表达式作为输入,并将运算结果返回。 print()和format()输出 format()输出...

colinux
23分钟前
0
0
Python 核心编程 (全)

浅拷贝和深拷贝 1.浅拷贝:是对于一个对象的顶层拷贝,通俗的理解是:拷贝了引用,并没有拷贝内容。相当于把变量里面指向的一个地址给了另一个变量就是浅拷贝,而没有创建一个新的对象,如a...

代码打碟手
35分钟前
0
0
PHP 对象比数组省内存?错!数组比对象省内存?错!

刚刚一个群里有人引出了 PHP 数组和对象占用内存谁多谁少的问题。我想起之前我好像也测试过这个问题,和群里人说的对象比数组节省内存的结论相反,我得出的是数组比对象节省内存。 但今天,我...

宇润
52分钟前
1
0
memcached命令行及其用法

21.5 memcached命令行 创建数据 yum install -y telnet 利用telnet命令连接memcached数据库 telnet 127.0.0.1 11211 #写入数据 set key2 0 30 212STORED 这个是错误的示范,因为0 30 已经...

lyy549745
52分钟前
0
0
Maven私服

Maven私服 一、简介 当多人项目开发的时候,尤其聚合项目开发,项目和项目之间需要有依赖关系,通过maven私服,可以保存互相依赖的jar包,这样的话就可把多个项目整合到一起。 如下图: Inst...

星汉
55分钟前
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部