文档章节

人工智能资料库:第28辑(20170209)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:23
字数 603
阅读 2
收藏 0

  1. 【博客】Using Apache Spark for large-scale language model training

简介:

Processing large-scale data is at the heart of what the data infrastructure group does at Facebook. Over the years we have seen tremendous growth in our analytics needs, and to satisfy those needs we either have to design and build a new system or adopt an existing open source solution and improve it so it works at our scale.

For some of our batch-processing use cases we decided to use Apache Spark, a fast-growing open source data processing platform with the ability to scale with a large amount of data and support for custom user applications.

原文链接:https://code.facebook.com/posts/678403995666478/using-apache-spark-for-large-scale-language-model-training/


2.【论文】Deep Successor Reinforcement Learning

简介:

Learning robust value functions given raw observations and rewards is now possible with model-free and model-based deep reinforcement learning algorithms. There is a third alternative, called Successor Representations (SR), which decomposes the value function into two components – a reward predictor and a successor map. The successor map represents the expected future state occupancy from any given state and the reward predictor maps states to scalar rewards. The value function of a state can be computed as the inner product between the successor map and the reward weights. In this paper, we present DSR, which generalizes SR within an end-to-end deep reinforcement learning framework. DSR has several appealing properties including: increased sensitivity to distal reward changes due to factorization of reward and world dynamics, and the ability to extract bottleneck states (subgoals) given successor maps trained under a random policy. We show the efficacy of our approach on two diverse environments given raw pixel observations – simple grid-world domains (MazeBase) and the Doom game engine. 2

原文链接:https://arxiv.org/pdf/1606.02396.pdf


3.【博客】Lets practice Backpropagation

简介:

In the previous post we went through a system of nested nodes and analysed the update rules for the system.We also went through the intuitive notion of backpropagation and figured out that it is nothing but applying chain rule over and over again.Initially for this post I was looking to apply backpropagation to neural networks but then I felt some practice of chain rule in complex systems would not hurt.So,in this post we will apply backpropogation to systems with complex functions so that the reader gets comfortable with chain rule and its applications to complex systems.

原文链接:https://jasdeep06.github.io/posts/Lets-practice-backpropagation/


4.【博客】Deep Learning in R

简介:

Deep learning is a recent trend in machine learning that models highly non-linear representations of data. In the past years, deep learning has gained a tremendous momentum and prevalence for a variety of applications (Wikipedia 2016a). Among these are image and speech recognition, driverless cars, natural language processing and many more. Interestingly, the majority of mathematical concepts for deep learning have been known for decades. However, it is only through several recent developments that the full potential of deep learning has been unleashed (Nair and Hinton 2010; Srivastava et al. 2014).

原文链接:http://www.rblog.uni-freiburg.de/2017/02/07/deep-learning-in-r/


5.【代码】Practical PyTorch tutorials, focused on using RNNs for NLP

简介:


Learn PyTorch with project-based tutorials. So far they are focused on applying recurrent neural networks to natural language tasks.

These tutorials aim to:

  • Acheive specific goals with minimal parts
  • Demonstrate modern techniques with common data
  • Use low level but low complexity models
  • Reach for readablity over efficiency

原文链接:https://github.com/spro/practical-pytorch


本文转载自:http://www.jianshu.com/p/6f706584d7b7

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
免费教材丨第48期:业界大牛中文教学视频《深度学习:进阶》第25-28讲

小编说 我们将继续发放彭老师的《深度学习:进阶》课程,本期发放第25-28讲,本教材由麦子学院提供,现表示感谢。本教学视频为中文教学,代码讲解为主,通俗易懂哦! 彭亮简介 美国犹他州立大...

r1unw1w
2017/10/29
0
0
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
柯洁又一次输了人机大战:不敌国产AI 直言太无力

▼ 点击上方蓝字 关注网易智能 为你解读AI领域大公司大事件,新观点新应用 【网易智能讯 4月28日消息】昨日,第一届“吴清源杯”世界女子围棋赛暨2018世界人工智能围棋大赛在福州举行,中国知...

mcil9g4065q
04/28
0
0
依图夺脸部辨识首奖,施密特:美国 AI 优势只剩 5 年

Thomson Reuters 28 日报导,根据美国智库“新美国安全中心”(CNAS)专家 Elsa Kania 发布的报告,中国在科技领域已经不比美国差,可能已有能力在人工智能(AI)项目超越美国。 Alphabet I...

moneydj
2017/11/29
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

es6

在实际开发中,我们有时需要知道对象的所有属性,原生js给我们提供了一个很好的方法:Object.keys(),该方法返回一个数组 传入对象,返回属性名 var obj = {'a':'123','b':'345'};console.l...

不负好时光
9分钟前
0
0
叮!您收到一份超值Java基础入门资料!

摘要:Java语言有什么特点?如何最大效率的学习?深浅拷贝到底有何区别?阿里巴巴高级开发工程师为大家带来Java系统解读,带你掌握Java技术要领,突破重点难点,入门面向对象编程,以详细示例...

全部原谅
11分钟前
0
0
web.xml容器加载顺序

容器对于web.xml的加载过程是context-param >> listener >> fileter >> servlet

Aeroever
13分钟前
1
0
Docker容器日志查看与清理

1. 问题 docker容器日志导致主机磁盘空间满了。docker logs -f container_name噼里啪啦一大堆,很占用空间,不用的日志可以清理掉了。 2. 解决方法 2.1 找出Docker容器日志 在linux上,容器日...

muzi1994
14分钟前
0
0
J2Cache 和普通缓存框架有何不同,它解决了什么问题?

不少人看到 J2Cache 第一眼时,会认为这就是一个普普通通的缓存框架,和例如 Ehcache、Caffeine 、Spring Cache 之类的项目没什么区别,无非是造了一个新的轮子而已。事实上完全不是一回事!...

红薯
17分钟前
414
10

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部