文档章节

人工智能资料库:第41辑(20170305)

AllenOR灵感
 AllenOR灵感
发布于 2017/09/10 01:23
字数 914
阅读 3
收藏 0
点赞 0
评论 0

  1. 【博客】OpenAI post about Generative Models: an example of excellence in R&D

简介:


The last post of this week will be a share of a Blog post from the excellent organization OpenAI. OpenAI is excellent because of its quality overall, but importantly because it is completely open and open source about Artificial Intelligence (AI) research and development of algorithms; the researchers comprising it are all (or almost I suppose…) PhDs in the fields of Computer Science, Machine/Deep Learning, AI or related scientific subjects like Data Science/Statistics (the cautioned informed reader knows full well that Machine/Deep learning aren’t really independent fields of study, so there aren’t really PhDs in those fields, but only in Computer Science, but I hope that shouldn’t be understood literally).

OpenAI features an excellent online presence and its Blog posts are readership that is highly to recommend. Today I would like to share one such posts that I encountered while doing my daily research briefing in AI subject matters. It is about generative models, and the flurry of activity these models are creating within the AI research communities is nothing short of justified excitement. These models are demonstrating important capacities to improve significantly machine/deep learning pipelines of all sorts, but the main excitement has revolved around Computer Vision and Natural Language Processing applications. The emergence og GANS (generative adversarial networks), for instance, have found potential in social media environments and other settings. But generative models are a broad category of models and conceptual frameworks with usability in the fields I mentioned earlier in the first paragraph. To list them like it is found in the Wikipedia entry would also be useful for purposes here (with the corresponding links) :

Examples of generative models include:
Gaussian mixture model and other types of mixture model
Hidden Markov model
Probabilistic context-free grammar
Naive Bayes
Averaged one-dependence estimators
Latent Dirichlet allocation
Restricted Boltzmann machine
Generative adversarial networks

原文链接:https://theinformationageblog.wordpress.com/2017/03/03/openai-post-about-generative-models-an-example-of-excellence-in-rd/


2.【博客 & 代码】Infinite Mixture Models with Nonparametric Bayes and the Dirichlet Process

简介:


Imagine you’re a budding chef. A data-curious one, of course, so you start by taking a set of foods (pizza, salad, spaghetti, etc.) and ask 10 friends how much of each they ate in the past day.

Your goal: to find natural groups of foodies, so that you can better cater to each cluster’s tastes. For example, your fratboy friends might love wings and beer, your anime friends might love soba and sushi, your hipster friends probably dig tofu, and so on.

So how can you use the data you’ve gathered to discover different kinds of groups?

原文链接:http://blog.echen.me/2012/03/20/infinite-mixture-models-with-nonparametric-bayes-and-the-dirichlet-process/


3.【论文】On the Origin of Deep Learning

简介:

This paper is a review of the evolutionary history of deep learning models. It covers from the genesis of neural networks when associationism modeling of the brain is studied, to the models that dominate the last decade of research in deep learning like convolutional neural networks, deep belief networks, and recurrent neural networks, and extends to popular recent models like variational autoencoder and generative adversarial nets. In addition to a review of these models, this paper primarily focuses on the precedents of the models above, examining how the initial ideas are assembled to construct the early models and how these preliminary models are developed into their current forms. Many of these evolutionary paths last more than half a century and have a diversity of directions. For example, CNN is built on prior knowledge of biological vision system; DBN is evolved from a trade-off of modeling power and computation complexity of graphical models and many
nowadays models are neural counterparts of ancient linear models. This paper reviews these evolutionary paths and offers a concise thought flow of how these models are developed, and aims to provide a thorough background for deep learning. More importantly, along with the path, this paper summarizes the gist behind these milestones and proposes many directions to guide the future research of deep learning.

原文链接:https://arxiv.org/pdf/1702.07800.pdf


4.【博客】Up to Speed on Deep Learning: March Update

简介:


Continuing our series of deep learning updates, we pulled together some of the awesome resources that have emerged since our last post. In case you missed it, here are our past updates: November, September part 2 & October part 1, September part 1, August part 2, August part 1, July part 2, July part 1, June, and the original set of 20+ resources we outlined in April. As always, this list is not comprehensive, so let us know if there’s something we should add, or if you’re interested in discussing this area further.

原文链接:https://hackernoon.com/up-to-speed-on-deep-learning-march-update-355cb5944f9c#.qfla7k8mu


5.【代码】Faiss

简介:

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful algorithms are implemented on the GPU. It is developed by Facebook AI Research.

原文链接:https://github.com/facebookresearch/faiss


本文转载自:http://www.jianshu.com/p/44afa2e0d3ab

共有 人打赏支持
AllenOR灵感
粉丝 10
博文 2634
码字总数 82983
作品 0
程序员
预测流行偏好,时尚 AI 未来可望取代造型师

【Technews科技新报】预测时尚潮流是一项需要天分的工作,还得仰赖一个庞大的系统让少数人追捧的时尚进入大众流行市场,进而让业者赚取大笔钞票。现在预测工作也可以交给人工智能,让服饰业者...

黄 嬿
2017/12/26
0
0
免费教材丨第48期:业界大牛中文教学视频《深度学习:进阶》第25-28讲

小编说 我们将继续发放彭老师的《深度学习:进阶》课程,本期发放第25-28讲,本教材由麦子学院提供,现表示感谢。本教学视频为中文教学,代码讲解为主,通俗易懂哦! 彭亮简介 美国犹他州立大...

r1unw1w
2017/10/29
0
0
人工智能知识整理-第1辑(20170603)-机器学习入门资源汇总

有一天我忽然忘记了一个函数的用法,于是就上谷歌搜,结果搜出来的竟然是自己写的一篇笔记,上面有很详细的回答。当时感觉是跟另外一个自己进行交流,那一个是刚学完知识,印象还非常深的自己...

人工智豪
2017/06/03
0
0
区块链技术让科学家共享患者健康资讯,同时保障个人资料安全

【Technews科技新报】目前医生在依据乳房摄影判断乳癌发生的情况下,有四分之一的乳癌无法被及时判断发现。为了提升乳癌确诊的效率,科学家计划以数百万包含了健康女性以及患有乳癌的女性乳房...

黄 斯沛
04/16
0
0
人工智能时代的工作、学习和生活---《人工智能》阅读笔记

自从“罗辑思维”栏目从优酷网站搬到得到APP并且变为每天几分钟的节目之后,我就很少收听它了。某天,我打开得到APP,并且点开了“罗辑思维”的节目清单,发现有一期的标题包含了“人工智能”...

zhouzxi
2017/07/15
0
0
中国人工智能人才分布情况

来源:头条号/倚惊鸿 人工智能既是计算机科学的一个分支,又是计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性学科。基于权威标准...

EETOP
02/02
0
0
李德毅、谭铁牛、杨强、周志华共话 AI,CCAI 2017 即将启幕

在今年的 Keynote 上,中国工程院院士、中国人工智能学会理事长李德毅,中国科学院院士、中国人工智能学会副理事长谭铁牛,阿里巴巴技术委员会主席王坚将联袂发表大会致辞,总结产学研界在人...

tangxiaoyin
2017/07/18
0
0
人工智能、大数据、复杂系统学习

黑科技,人工智能前进之路势不可挡! “做大做强新兴产业集群,实施大数据发展行动,加强新一代人工智能研发应用。发展智能产业,拓展智能生活。” 人工智能已作为国家乃至全球新的经济增长动...

自学号
05/10
0
0
人工智能有“天花板” 传统产业要“+科技”——知名企业家激战“新经济”

(原标题:人工智能有“天花板” 传统产业要“+科技”——知名企业家激战“新经济”) 中国证券网讯 据新华社12月5日消息,“携手新时代,共话新经济”,第四届世界互联网大会上,多位企业家...

上海证券报·中国证券网
2017/12/05
0
0
希捷发布人工智能硬盘酷鹰AI,优化视频监控安全性和分析速度

该硬盘便于市场各大人工智能公司部署下一代深度学习和视频分析应用。 29日,希捷发布了全球首款人工智能视频监控硬盘“酷鹰人工智能”(SkyHawk AI)。 分析表明,随着网络录像机(NVR)加入分析...

行者武松
04/17
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

OSChina 周五乱弹 —— 我们是食物链的最底层

Osc乱弹歌单(2018)请戳(这里) 【今日歌曲】 @温家成 :分享谢安琪的单曲《姿色份子》 《姿色份子》- 谢安琪 手机党少年们想听歌,请使劲儿戳(这里) @贪吃飒:最近p2p怎么了、半个月爆了...

小小编辑
17分钟前
4
1
Android Studio 3.0 之后打包apk出现应用未安装问题

1、废话 出现这个问题的原因,并不是只有一个,而是有多个原因,不懂的估计会被搞得一头雾水,下面我列举的是我遇到的几种问题和网友遇到的几种问题,但不一定是全部,也有可能有些莫名其妙的...

她叫我小渝
37分钟前
0
0
前端基础

1. get请求传参长度的误区 误区:我们经常说get请求参数的大小存在限制,而post请求的参数大小是无限制的。 实际上HTTP 协议从未规定 GET/POST 的请求长度限制是多少。对get请求参数的限制是...

wenxingjun
今天
0
0
拦截SQLSERVER的SSL加密通道替换传输过程中的用户名密码实现运维审计(一)

工作准备 •一台SQLSERVER 2005/SQLSERVER 2008服务 •SQLSERVER jdbc驱动程序 •Java开发环境eclipse + jdk1.8 •java反编译工具JD-Core 反编译JDBC分析SQLSERVER客户端与服务器通信原理 SQ...

紅顏為君笑
今天
9
0
jQuery零基础入门——(六)修改DOM结构

《jQuery零基础入门》系列博文是在廖雪峰老师的博文基础上,可能补充了个人的理解和日常遇到的点,用我的理解表述出来,主干出处来自廖雪峰老师的技术分享。 在《零基础入门JavaScript》的时...

JandenMa
今天
0
0
linux mint 1.9 qq 安装

转: https://www.jianshu.com/p/cdc3d03c144d 1. 下载 qq 轻聊版,可在百度搜索后下载 QQ7.9Light.exe 2. 去wine的官网(https://wiki.winehq.org/Ubuntu) 安装 wine . 提醒网页可以切换成中...

Canaan_
今天
0
0
PHP后台运行命令并管理运行程序

php后台运行命令并管理后台运行程序 class ProcessModel{ private $pid; private $command; private $resultToFile = ''; public function __construct($cl=false){......

colin_86
今天
1
0
数据结构与算法4

在此程序中,HighArray类中的find()方法用数据项的值作为参数传递,它的返回值决定是否找到此数据项。 insert()方法向数组下一个空位置放置一个新的数据项。一个名为nElems的字段跟踪记录着...

沉迷于编程的小菜菜
今天
1
1
fiddler安装和基本使用以及代理设置

项目需求 由于开发过程中客户端和服务器数据交互非常频繁,有时候服务端需要知道客户端调用接口传了哪些参数过来,这个时候就需要一个工具可以监听这些接口请求参数,已经接口的响应的数据,这种...

银装素裹
今天
0
0
Python分析《我不是药神》豆瓣评论

读取 Mongo 中的短评数据,进行中文分词 对分词结果取 Top50 生成词云 生成词云效果 看来网上关于 我不是药神 vs 达拉斯 的争论很热啊。关于词频统计就这些,代码中也会完成一些其它的分析任...

猫咪编程
今天
0
0

没有更多内容

加载失败,请刷新页面

加载更多

下一页

返回顶部
顶部